AD-A256 707 |
e S (R

LI T

‘ . ; “.v . % » e : , :‘“;;. o '
LABORATORY FOR." @ % NSO Ot
COMPUTER SCIENCE) © TECHNOLOGY: -

MIT/LCS/TR-543

ASPECT: A FORMAL
' SPECIFICATION LANGUAGE
FOR DETECTING BUGS

T
BARLe
R 4 N
Dy ELECTT i
Q, NUVUG 193 K

% B/
N

Daﬁi_g;‘l‘ Jackson

Thiz document hags been approved !

far public 1elease and ' ‘

t publi sale;
i distribution {s unlimite;. i it ‘
1]

92-28323 Juné 1992
LT G

545 TECIINOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

REPORT DOCUMENTATION PAGE

OM8 Na. 07040188

PuDIiK repornng our tor thes ot intor " 10 Jverage ! ROUr DEF respOME. INCIUAING the LIME fOF FEVIEWING INSITUCTIONS. SSFCTIXNG SRNTING 32t SOuWrces,
qathenng ang Mmaintaining the data and ¢ ganars q the colection of intor Seno rEeQarding this Burden eIUMate OF 3NV OTHET ADECT Of thus
<ol ot intor Q SUQg! toe r g this puraen, tQ g Ters Services. Directorate for INTOrMation Qoerations and Reports, 1213 Jetferson
Daves Mignwav., Suite 1204. Arington, VA 22202-4302. ana to the Office of Manag ana Buaget. PEOETWOrK Reduction Project (0704-0188), Waswngton, OC 20503,
— —————————
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1992

4. TITLE AND SUBTITLE

Bugs

Aspect: A Formal Specification Language for Detecting

6. AUTHOR(S)

Jackson, D.

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology
Laboratory for Computer Science
545 Technology Square

8. PERFORMING ORGANIZATION
REPORT NUMBER

DARPA
1400 Wilson Blvd.
Arlington, VA 22217

N00014-89-J-1988

Cambridge, MA 02139 MIT/LCS/TR~543
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING ’
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NQTES

123. DISTRIBUTION / AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 woras)

Aspect is a static analysis technique based on formal specifications. By trading expressive power for
tractability, Aspect can offer efficient detection of a class of bugs that is not detectable by other static
means. Since the specifications are partial, not all bugs can be caught. But there are never any spurious
reports: an error message aways indicates an error in the code or a flaw in the specification.

Aspect can handle most of the features of modem imperative programming languages: side-effects
and aliasing, exceptions, polymorphism and dynamic allocation. It takes advantage of strong typing and is
designed for programs that are organized around procedures and abstract types.

The checking mechanism is based on an enriched form of dependency analysis. Objects are divided
into projections called ‘aspects'; the dependencies of different aspects are then tracked individually. The
analysis is comparable in complexity to the kinds of analysis already performed by optimizing compilers.

A prototype checker has been implemented for the CLU programming language. It runs almost as fast !
as the compiler, and has found a variety of bugs in real programs.

FJ. 3UBJECT TERMS
|

*5. NUMBER OF PAGES

162

16. PRICZ CCOE °)
!

17. SECURITY CLASSIFICATICN | 18. SECURITY CLASSIFICATION
SF REPORT OF THIS PAGE

. SECURITY CLASSIFICATICN

OF ABSTRACT

20. LUMITATION QF ABSTRACT ;

NS 7340-91-230-3300

starcarg rorm 38 (lev 2-39)
dregcnipea Ov ~NSI Sta (J9-08
199-192

Aspect

A FORMAL SPECIFICATION LANGUAGE FOR DETECTING BUGS

Accesion For

3)
o, NTIS CRA&I X
o .

Bic TAS

%’h Us.annouiiced 7

< Justiticatien
QZ:&.,
Daniel Jackson 0 mw-
June 16th, 1992 0:®ibution |

Availabitity Coles

(©Massachusetts Institute of Technology, 1992
All rights reserved

This report is a copy of the author’s thesis, submitted to the Department of
Electrical Engineering and Computer Science in September 1992 in partial
fulfillment of the requirements for the degree of Doctor of Philosophy, at
the Massachusetts Institute of Technology. The thesis was supervised by
Professor john V. Guttag. The research was supported by grants from DARPA
(N00014-89-J-1988) and NSF (8910848-CCR). The author’s current address
is: School of Computer Science, Carnegie Mellon University, 5000 Forbes
Avenue, Pittsburgh, PA 15213-3890.

Abstract

Aspect is a static analysis technique based on formal specifications. By
trading expressive power for tractability, Aspect can offer efficient detection
of a class of bugs that is not detectable by other static means. Since the
specifications are partial, not all bugs can be caught. But there are never
any spurious reports: an error message always indicates an error in the code
or a flaw in the specification.

Aspect can handle most of the features of modern imperative program-
ming languages: side-effects and aliasing, exceptions, polymorphism and dy-
namic allocation. It takes advantage of strong typing and is designed for
programs that are organized around procedures and abstract types.

The checking mechanism is based on an enriched form of dependency anal-
ysis. Objects are divided into projections called ‘aspects’; the dependencies
of different aspects are then tracked individually. The analysis is compara-
ble in complexity to the kinds of analysis already performed by optimizing
compilers.

A prototype checker has been implemented for the CLU programming
language. It runs almost as fast as the compiler, and has found a variety of
bugs in real programs.

Acknowledgments

But for John Guttag, my thesis would be twice as long and half as good. After
six years of his supervision, I think I have finally grasped what research is all
about: thinking big thoughts but taking small and measured steps. He not
only tolerated my iconoclastic ideas, but helped me sharpen and clarify them
even when they were different from his own. Many times, after I had dug
myself into a deep hole (usually because I had ignored his advice), he would
announce “Let’s take a step back” and half an hour later I would be back at
the surface. His abilities extend beyond supervising research: if finding an
academic job in a recession is like standing for President, I could not have
found a more savvy and supportive campaign manager.

My readers were Butler Lampson, David Gifford and Pamela Zave. Butler
complained right from the start that Aspect was too complicated (and he was
right). Being subjected to his questions is like being a criminal on trial. I
am glad now, though, that I was unable to fool him. and I think the thesis
was immeasurably improved by his skepticism.

David Gifford gave me advice on doing experiments. His graduate pro-
gramming language course, 6.821, was a highlight of my time at MIT; it
gave me a foundation in type theory and semantics without which [would
not have been able to write this thesis.

Pamela Zave helped me think about the broader context of my work, and
her cwn work on specification has influenced me greatly. The summer I spent
working with her at Bell in 1988 left quite an impression: I had no idea what
it meant to tackle a real example until I saw her take on the specification of
5ESS almost single-handedly. I hope her writing skills also rubbed off on me.
If not, at least her meticulous editing has removed many of my blunders.

My father, Michael Jackson, has been my technical cheer-leader. He has
pointed me in fruitful directions by extolling the virtues of my better ideas—
far beyond their merit—without ever telling me how bad the rest really are.

More than once I have faxed him a draft of a paper late at night and had his
comments within hours in time for submission the next day. But most of all,
I want to thank him for starting me on the long road that led to this thesis.
Project Crew might have ended my computing career if he had not shown
me that even COBOL is fun when treated methodically. I must say, however,
that technologically he is outclassed by my mother. Her correspondence has
been even more frequent since she discovered “femail” and has often been
the thing I looked forward to most on arriving at work.

Keith Randall implemented the second version of the Aspect Checker
and helped me invent reference aspects. Dorothy Curtis spared me some
agonies trying to understand the CLU compiler by always being on hand
to pore over code with me. The Two Marks were a sounding board for
my ideas and, as our system managers, saved me from learning UNIX by
always knowing the right incantations. Mark Reinhold managed to give
me useful comments on drafts of my work in its incomprehensible phase.
Mark Vandevoorde explained the subtleties of CLU to me, and his own work
on object containment clarified many of the problems I faced dealing with
aliasing and abstraction functions.

My work benefited from discussions with many people including: Steve
Garland, Jim Horning (who dared me to start my thesis with the word “but”),
Albert Meyer, Tobias Nipkow, Sharon Perl, Mark Sheldon, Raymie Stata,
Yang Meng Tan, Bill Weihl, Jeannette Wing and Kathy Yelick. Many thanks
also to Neena Lyall who gave me her shrikhand recipe and to Gerry Brown
who supplied a constant stream of stationery and abuse.

The ITT Corporation funded my first two years of graduate school. My
favorite lawyer, Claudia Marbach, funded the rest (with a little help from
DARPA and NSF). If it had not been for her, Aspect would have finished me
before I finished it.

In our description of nature the purpose is not to disclose the
real essence of the phenomena but only to track down, so far
as it is possible, relations between the manifold aspects of our
experience.

Niels Bohr
Atomic Theory and the Design of Nature, 1934

Contents

1" Introduction 15
1.1 Aspect: A Foray into Unexplored Territory 16
1.2 Aspect in Action: A Sneak Preview 17

1.2.1 A Classof SimpleErrors 19
122 How Aspect Works 19
1.3 Foundations 21
1.4 A Brief Survey of Bug-Elimination Schemes z
1.4.1 Run-time Assertions 22
1.4.2 Verification 23
143 Testing. 25
144 Typechecking. 26
1.4.5 Programming Language Design 26
1.5 The Organization of the Thesis e 28

2 Aspect Dependencies 31
2.1 EditorBuffers, 31
2.2 First Example: A DetectableBug 32
2.3 The Soecification cf the Buffer Type 33
2.4 The Lack of Interpretation of Aspects 35
2.5 The Two Roles of Specifications 36
2.6 Specifications Express Extra Information 36
2.7 Two Interpretations of Dependency Assertions 38
2.8 Second Example: More Detail 39
2.9 Calculating Dependencies 42
210 AColonyofBugs 46
2.11 Control Dependencies. 47
2.12 Specifying and Checking Exceptions 48

2.13 Summary e
Reference Aspects

3.1 Pointer Aspects
3.2 The Problemof Aliasing
3.3 Binding Assertions
34 GraphEvaluation
3.5 Checking Binding Assertions
3.6 Collection Aspects
3.7 Polymorphism L L
3.8 Allocation Assertions
3.9 ImmutableObjects
310 Summary L e
Refinements

4.1 Reference Dependencies
4.2 Rationale for Reference Dependencies
4.3 Assertions As Possibilities
4.4 Prenamingof Objects.
4.5 CatchingExtraBugs
46 Summary
Abstraction Functions

5.1 SimpleExamples
5.2 The Nature of Abstract Objects
5.3 More Complex Abstraction Functions
5.4 Rules for Translating Abstract Assertions
5.5 Buffersand Arrays L.
5.6 Abstract Binding Assertions
5.7 Summary

Formal Semantics

6.1 The Representation of CLU Histories with Aspect States .

6.2 The Domain Equations of the Aspect State
6.3 Aspect State Examples, ..
6.4 Context
6.5 Namesof Locations

6.6 Well-formed States
6.7 Procedure Specifications
6.8 The Meaning of Aspect Expressions
6.9 The Meaning of Assertions
6.10 Discussion of Assertion Semantics
6.11 The Meaning of Allocation Assertions,
6.12 The Meaning of the Translation Dependency
6.13 The Meaning of the Program Constructs
6.14 Specifications of Some Built-in Types
6.15 Summary e e e
The Checker Mechanism
7.1 The Need for Approximation.
7.2 The Implemented Approximation
7.2.1 The Approximating State
7.2.2 ExecutingCode
7.2.3 Executing Specifications
7.2.4 Checking The Final State
7.3 Using the Checker. e e e e
T4 Summary i e e e e e e
Extensions
81 AspectOrderings
8.2 Omitted Specifications
8.3 Polymorphism Problems
8.4 Over-Specification Due to Immutable Objects
8.5 Over-specification Due to Aliasing
8.6 Values for Plain Aspects
Conclusion
9.1 Experience.
9.2 Comparison to Other Schemes
9.2.1 Imscape,
922 TypeSystems

9.3

9.2.3 Event Sequence Analyzers
9.2.4 Program Slicing
Aspect’s Design Principles

9.4 Contributions

Glossary

...........................

12

151

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

5.1
5.2
5.3

Removing duplicates from anarray 1¢
Part of the buffer specification 34
A zappingscenario it 40
More of the buffer specification 42
Dividing arguments into aspects 43
The first state transition of the abstract execution 43
The calculation of dependency states for the code of zap . . . 45
The comparison of the final state and required state 45
Some bugs detectedinzep, 46
Aspect control-flow dependencies 47
Specifying exceptional dependencies 49
A failure to specify aliasing in a called procedure 56
The initial state of zap_in_upper 59
The state following b: buf := window$get_upper (w) 60
The specificationof zap 61
The final state of zap_in_upper 62
Checking a binding assertion 63
Specificationof astack 65
A procedure that usesastack 66
Assigning dependences to allocated objects 68
Illustration of pointer dependencies 73
First example, revisited 78
Part of a polynomial implementation 83
An abstract polynomial 86
A specificationof arrays L. 90

13

5.4
5.5
3.6

6.1
6.2
6.3
6.4
6.5

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6

Part of the annotated buffercode 91

The implementation of a buffer operation 93
Stack representation 95
The domain equations of the Aspect state 99
A procedure to demonstrate Aspect states 101
A pairof Aspectstates 102
Part of the built-in integer specification 115
Part of the built-in record specification, simplified 115
Approxanation of the Aspect State 120
Asamplecheckerrun 125
The problem of dependent aspects 128
Catching more bugs with dependent aspects 129
The initial tagging of the buffer aspects 129
Specificationof astack 132
Part of a polymorphic queue implementation 133
An example of over-specification 135

14

Chapter 1

Introduction

Because programmers make mistakes, most programs contain bugs—faults
that lead to malfunction. A bug may show up only under rare conditions,
but its effect may be devastating’.

Eliminating bugs is notoriously hard. Some bugs are easy to detect be-
cause they violate simple rules about the way a program should be con-
structed. This kind of bug, called an anomaly, can be detected without even
knowing what the program is supposed to do. It never makes sense, for ex-
ample, to read a variable that has not been assigned a value. But most bugs
are not anomalies. A program free of anomalies does something right; we
want to know if it does the right thing. This cannot be determined without
knowing how the program is expected to behave.:

One way to catch bugs is by testing: running the program on some in-
puts and checking the correctness of the outputs. In theory any bug can
be detected in a trial run. But in practice it is hard to choose the inputs
that are most likely to expose faults. Interpreting the outputs may also be
tricky. Worse still, most software cannot be adequately tested until it is near
completion, when bugs are harder to pinpoint and far more costly to fix.

An alternative to testing is static analysis: checking the program by ex-
amining, rather than executing, its text. This works best when each compo-
nent has a specification—a description of its intended behaviour. A compo-
nent can then be checked independently, by assuming that the components it
uses meet their specifications. Whether they are faulty (or even whether their
code is missing) is immaterial; the effect of bugs elsewhere can be ignored.

1«Car with computerized steering loses control when out of gas’, Autoweek, June 22,
1987.

15

16 CHAPTER 1. INTRODUCTION

The most extensive form of static analysis is program verification, in which
a mathematical proof is constructed to show that a program meets its speci-
fication. Although its principles are well-understood, verification is not used
in practice. For most software development projects, it is simply not cost-
effective: there are far cheaper ways of eliminating bugs (such as testing).
The cost of verification is so high that, safety-critical systems aside, it can
rarely be justified whatever its benefits.

The cost of verification has two sources. First, even writing a complete
specification is beyond the budget of most projects. To be precise enough, the
specification must be formal, that is, written in a notation whose syntax and
semantics is mathematically defined. This may not be appreciably easier
than writing the code itself. Second, the proof of correctness cannot be
automated; the user has to provide loop invariants and lemmas.

In contrast to verification, type checking is a form of static analysis that
is widely used. Type declarations are easy to write, and in strongly typed
languages (such as Pascal), can be checked automatically. They have been
a spectacular success; a surprisingly high proportion of careless mistakes
manifest themselves as type errors. Moreover, a program free of type errors
is far easier to test. But type checking is only good for minor slips and many
bugs escape it.

1.1 Aspect: A Foray into Unexplored Territory

Verification can in theory find any bug, but its cost is high; type checking is
cheap but its power is limited. This thesis is an attempt to find some middle
ground.

Aspect is a static analysis technique for detecting bugs in code. It com-
prises a specification notation and a checker that generates bug reports by
finding claims in the specification that the program does not satisfy. As-
pect specifications are easy to write and compositional: the specification of
a composite type is constructed automatically from the specifications of its
parts. The checker runs almost as fast as a compiler and without any user
interaction.

The tractability of Aspect is achieved by limiting the expressiveness of its
notation. Because the specifications are partial, they cannot capture all the
required properties of the program, so some bugs are inevitably missed. But

1.2. ASPECT IN ACTION: A SNEAK PREVIEW 17

the checker is sound: it guarantees the absence of spurious reports. When a
bug is listed, there must be an error in the code—or, of course, a specification
flaw.

Aspect can be applied incrementally, the programmer deciding which
parts of the program to specify and to what level of detail the specifica-
tions are written. The checker analyzes whatever it is given; a procedure
can be checked even if it calls procedures that are not coded, coded but not
specified, or neither coded nor specified.

Aspect is designed for strongly-typed, imperative languages that support
data abstraction. The version described in this thesis is for cCLU?[Lis79] ,
but it should work for other languages with these features, such as Modula
and Ada. Aspect can handle arrays and pointers, side-effects and alias-
ing, polymorphism, exceptions and dynamic allocation, but not higher-order
functions.

1.2 Aspect in Action: A Sneak Preview

The essence of Aspect is reasoning about dependencies between the ‘aspects’

of abstract objects. The programmer writes a specification claiming that
certain aspects of result objects depend for their computation on certain
aspects of the argument objects. The checker examines the code to see if
these dependencies are plausible. If one is missing—that is, a result was
computed with inadequate information—an error is reported.

Figure 1.1 shows a procedure that removes duplicate elements from an
array. The array is modified in place. The elements are examined in turn
by incrementing i. The index 7 points to the end of the array prefix that is
guaranteed free of duplicates; the set s contains the elements of this segment.
The segment between ; and : contains only duplicates and is trimmed off
when ¢ reaches the high bound.

An operation o of an abstract type tis written t$o in cLU. The operation
arr$low, short for arrayfint/$low, returns the low bound from which the array
is indexed. The statement afj] := e is short for the procedure call

arrayfint/$store (a, j, €)

2None of the thesis assumes knowledge of cLU, but for the curious, a tutorial introduc-
tion may be found in [LG86].

18 CHAPTER 1. INTRODUCTION

arr = array [int]
remove_dupls = proc (a: arr)
alow: int := arr$low (a)
i: int := adow
J: int := alow
s: intset := intset$create ()
while i <= arr$high (a) do
e: int := afi]
if ~intset§member (s, e) then
intset$insert (s, e)

afj] := e

Ji=3+1

end
t:=1+4+ 1
end

arr$trim (a, a_low, j — a_low)
end remove_dupls

Figure 1.1: Removing duplicates from an array

1.2. ASPECT IN ACTION: A SNEAK PREVIEW 19

and its effect is to store the element e at the index j of the array a. The call
arr$trim (a,lo,ct) removes all the elements of a below the index lo and above
the index lo + ¢t — 1.

1.2.1 A Class of Simple Errors

Although the procedure is not complicated, a competent programmer might
still make mistakes coding it, such as: confusing i and j by reversing their
increments or writing ¢ in the call to trim; misplacing the end of the if-
statement, so that it precedes the increment of j; omitting the call to trim
entirely, etc.

A simple observation explains why each of these mistakes must cause the
program to misbehave. The size of the array after removing the duplicates
should be a function of more than the size before—the values of the elements
themselves must be taken into account. So there must be a path through
the procedure for which the final value of the size of the array depends on
the initial values of the elements. All of the slips listed above will result in a
procedure that fails to satisfy this property.

Consider the case of writing i instead of jin the call to trim. The size of
the array after the call to ¢trim depends on its size before, and on the values
of the second and third arguments. The actual a_low equals the low bound,
and does not depend on the value of any element. So the only hope left for a
dependence of the size on the value of an element is i. Looking at the loop,
however, it is clear that i ranges only over the indices of the array.

1.2.2 How Aspect Works

Aspect finds all these bugs automatically, given only a specification of re-
move_dupls. The built-in specification of arrays views an array in terms of
four ‘aspects’: size, the number of elements, ind, their indexing, el, the ob-
ject identities of the elements, and low, the low bound. Although the array
aspects may be thought of as functions on arrays (low, for example, map-
ping an array to its low bound), the checker regards them only as names of
components. It needs no interpretation of these names because it only tracks
dependencies between aspects and is not concerned about their values. There
is one exception, however: the aspect el is a ‘pointer’ aspect that can be used
to name objects that are elements of an array.

20 CHAPTER 1. INTRODUCTION

Every type is viewed in terms of aspects, but primitive types have only
a single aspect. This aspect is anonymous. So a.el, for example, denotes the
single aspect of the array element a.el. It is different from el(a), which is an
aspect of the array itself.

Here is the Aspect specification of remove_dupls®:

%@ size(a), el(a) — a.el
%@ ind(a) «— ind(a), a.el
%@ el(a) :— el(a)

These assertions relate the values of two objects, the array a and the archety-
pal element a.el, over two states—before and after execution of the procedure.
The expressions on the left refer to the values in the post-state, those on the
right, the values in the pre-state.

The first two lines are dependency assertions: the first says that size(a)
and el(a) after the execution depend on a.el before. This expresses formally
the criterion we formulated above: that you need to look at the elements
themselves (in the pre-state) to predict the final size of the array or which
elements it will contain (in the post-state). The second line makes a similar
claim about the array’s indexing. The third line is a binding assertion. It
relates the element identities before and after; its use is for alias analysis and
need not trouble us here. Some assertions are implied by omission. The low
bound, for example, is claimed to be invariant because there is no assertion
with low(a) on the left.

Suppose we run the checker on the faulty variant of remove_dupls in which
i is substituted for j in the call to trim. The checker would display:

Missing: size(a) on a.el
Missing: ind(a) on a.el
Missing: el(a) on a.el

showing that three required dependencies are missing. As another example,
suppose we wrote arr$bottom for arr$low. The checker would then display:

Missing: low(a) on low(a)

3%Q@ is a special comment symbol that distinguishes Aspect specifications from informal
comments.

1.3. FOUNDATIONS 2N

because the implied invariance of low(a) requires a dependence of low(a} on
itself. It is not found in this case because the call to ¢rim resets the low
bound to the bottom element of the array and not its index.

To find the missing dependencies, the checker calculates an approxima-
tion to the entire dependency relation between the aspects of the pre- and
post-states and checks that it contains the dependencies specified. The ap-
proximation is an over-estimate: it may include dependencies for paths that
cannot occur in any execution. The lack of precision may let a bug slip
through, but it cannot cause spurious messages, because if a bug is miss-
ing from the over-estimate, it must be missing from the exact dependency
relation too.

Calculating Aspect dependencies is like calculating regular dependencies
between variables. For example, the dependencies of

r:=y
ifb then z := z end

are: r on y, z on b (since whether z is changed depends on b), z on y, 2
on z, and b on b. A procedure call is usually handled by assuming that
each argument after depends on every argument before. Aspect differs by
separating the dependencies of an object’s aspects and by using a procedure’s
specification when it is called. The array operation arr$low, for example, has
a built-in specification

low = proc (a: arr) returns (int)

%@ result «— low(a)
that Aspect uses to give the first line of remove_dupls
alow := arr$low (a)

a dependency of a_low on low(a) and the remaining (invariant) aspects de-
pendencies on themselves: size(a) on size(a), low(a) on low(a), and so on.
A call to remove_dupls would be treated in the same way, using the same
specification that is used to check remove_dupls itself.

1.3 Foundations

The Aspect dependency calculation is similar to the kind of dataflow analysis
already performed by optimizing compilers [Fer87]. It relies on strong typing:

22 CHAPTER 1. INTRODUCTION

the type checker provides the type of an object, which Aspect uses to divide
the object into aspects. Aspect performs an alias analysis that is most similar
to Larus and Hilfinger’s scheme [LH88] but was developed independently.
The basic principles of this kind of alias analysis can be formalized as an
abstract interpretation [HPR89]. I avoided more elaborate aliasing schemes
(e.g. [CWZ90]) because they would complicate the specification notation
without much gain in precision.

An early conversation with Dewayne Perry got Aspect started. He told
me about his discovery that a large number of bugs in a telephone switch
were interface errors that could have been detected with simple, tractable
specifications [Per87]. His idea of “constructive specification” is embodied
by Inscape [Per89], whose relation to Aspect is discussed in Section 9.2.

Aspect is built on the notions of declarative specifications and abstract
data types developed by many researchers, including Guttag {Gut77], Parnas
[Par72] and Hoare [Hoa72].

1.4 A Brief Survey of Bug-Elimination Schemes

Section 9.2 compares Aspect to its most closely related research. This brief
survey sets Aspect in a broader context.

1.4.1 ..un-time Assertions

The Aspect analysis is performed entirely at compile-time. In contrast, some
systems (e.g., Euclid [Lam81], ANNA [LvH85] and Eiffel [Mey88]) allow pro-
grammers to write assertions in the program text that are checked at run-
time. Because assertions must be executable, they are laborious to write and
there is a risk that the programmer will express an assertion with a proce-
dure from the code itself. This reduces the redundancy value of the assertion,
and raises the awful spectre of perfectly good code crashing because of an
assertion. In ANNA, for example, only convention prevents an assertion from
having a disruptive side-effect. Runtime assertions also incur a performance
penalty, tempting the developer to switch off the checking when the system
is being used and, arguably, needs it most. Lastly, ru~-time assertions only
work on a finished program: a procedure cannot be ruu until the procedures
it calls have been coded too.

1.4. A BRIEF SURVEY OF BUG-ELIMINATION SCHEMES 23

Consider writing run-time assertions for remove_dupls. One obvious as-
sertion says that the array is unchanged when viewed as a set:

array-to_set (a_pre) = array.to_set (a_post)

but this does not help much, because if we cannot code remove_dupls cor-
rectly, we are unlikely to do better on array_to_set. More abstract assertions
do not spring to mind. Since run-time assertions are confined to single ex-

ecutions of a procedure, they have no analogue to an Aspect dependency
like

size(a) — a.el

that makes a claim about a set of executions. It would be no good to assert,
say, that every execution looks at some element of a; that would be violated
by the correct code when called on an empty array.

Despite these problems, run-time assertions are indispensabie®.. It is usu-
ally less work to annotate a program than to test it exhaustively. They
are especially helpful in locating bugs. When an assertion is violated, the
checker can behave like a debugger, printing out the values of variables and
identifying the point at which the violation occurred.

1.4.2 Verification

Verification is a useful technique for assuring the correctness of intricate
algorithms; its use in circuit analysis (for chip design) looks promising too.
But for software development it does not seem feasible. The problem is one
of scale, but not in the usual sense; if it worked for procedures, then it might
indeed scale to systems. Unfortunately, complex data types and indirection
in the store make a full proof of correctness quite complicated even for a
50-line procedure.

Some proponents of verification (e.g., [Dij76]) have argued that this com-
plexity can be overcome if the program is constructed hand-in-hand with its
proof. This has been elegantly demonstrated for some small algorithms?>.

4And I used them in the implementation of the Aspect checker itself.

5Correctness by construction is not infallible; some of these demonstrations appear in
a collection of published programs that were found to have bugs despite being verified
(GYT6].

24 CHAPTER 1. INTRODUCTION

In a sense, Aspect checking is a crude form of verification. Like the
formulae of a Hoare triple, Aspect assertions are implicit—relating the post-
states to the pre-states rather than giving a recipe for their construction—and
quantified—defined over the set of all possible executions rather than a single
execution.

There is another sense, however, in which Aspect is not verification. A
conventional specification is universally quantified: it says that some property
holds for every execution. An Aspect specification is existentially quantified;
it says that executions exist with certain dependencies. This is why an Aspect
dependency cannot be converted into a run-time assertion.

Aspect is designed this way because it is much harder to make a checker
sound if the specifications are universally quantified. With a conventional
specification, demonstrating the existence of a bug is equivalent to finding
an execution that violates a universal property. In rare cases, it might be
possible to show that all paths through the code violate the property, but
most often the violation will occur only on some path. To guarantee no
spurious messages, the checker must prove that this path can actually occur—
in general, an undecidable problem.

Tractable analyses based on partial verification have two choices. They
can simply forbid all programs that appear to be faulty. Type checkers do
this, flagging type errors in dead code for instance. The alternative is to give
up soundness and generate spurious messages. This has been the approach
of anomaly detectors (Section 1.4.5) like Lint and DAVE.

I decided to make Aspect sound because I do not believe that either of
these choices is acceptable. Forbidding unprovable programs is too extreme
once arbitrary specifications can be written. Spurious messages weaken the
utility of the checker; Lint is spurned by many programmers because so few
of its messages signal real problems. Rumour has it that a recent software
catastrophe® was due to a bug that Lint would have caught, but it was not
used becausc the cost of poring over reams of bogus messages was deemed
too high.

6A crash of the AT&T phone system on January 15th, 1990. See ACM Software Enyg.
Notes, 15/2, April 1990.

1.4. A BRIEF SURVEY OF BUG-ELIMINATION SCHEMES 25

1.4.3 Testing

There is no substitute for testing; to make sure that a program works, you
have to try it. But testing alone is not sufficient. Like run-time assertions,
it only works on finished programs. One can write stubs for unimplemented
procedures, but this is laborious and itself errocr-prone. Furthermore, it is not
always easy to evaluate the results of a test run. This problem is particularly
severe for testing interactive software where special tools (often tailored to the
system being tested) are needed to record and replay test sc-ipts. And last.,,
there is the problem of selecting test cases. The state space of a program
is generally so big that running a huge set of tests is not enough—they
have to be carefully picked. This is a trocablesome nd costly exercise. Some
ingenious techniques, such as coverage analysis [How76] and mutation testing
[Acr79, Off92], have been propos-d *o determine whether a program has been
adequately tested, but they do not work w:ll on code that is implemented
with complex abstract types.

With the right tesr ~-se, any bug can be found. Aspect, though, can only
catch a class of fai--v simple errors. For these it is likely to be cheaper and
more ~fective. . he ., of consiructing and evaluating a test case is the same
whether it is designe. to catch a cimple or a subtle bug. For example, a test
that remove_dupls maintains the emptiness of the array would require sample
arrays no easier to construct than for any other test case. If the procedure
removed dur‘.cate keys from a table represented as an array of pairs, the
samples wouid be more complicated, even though the internal structure of
the array is immaterial. Aspect’s benefit comes more in proportion to its
cost; a simple check needs only a simple assertion.

Symbolic testing [How77] is a hybrid of testing and verification. The pro-
gram is executed symbolically on test cases that are expressions containing
free variables. Although each expression represents a set of conventional test
cases, the user has to specify which path to take at a conditional branch and
how many times to go round a loop. A more elaborate approach [CHT79)
using an expression simplifier overcomes this problem, but its results may be
unsolved recurrence relations. These techniques cannot incorporate specifi-
cations or abstract types, and seem to be suited only to numerical programs.

26 CHAPTER 1. INTRODUCTION

1.4.4 Type checking

Type checking is limited in the kinds of bug it can catch. Calling the wrong
procedure, using the wrong variable name or misordering the arguments to
a procedure may all lead to type errors. But since the type of an object is
fixed over its lifetime, checking is insensitive to changes of state and has no
hope of catching omissions or misorderings of statements.

Type checking differs fundamentally from Aspect in two respects. First,
type checking addresses errors of commission rather than omission. A pro-
cedure that contains no code is always type-correct, but it will satisfy only
one Aspect specification—the empty one. Second, a type is a property of a
single object, so type checkers cannot detect errors in the way objects are put
together. Aspect, in contrast, is all about dependencies between aspects of
objects. We saw in the remove_dupls procedure, for example, how the checker
can catch an error of substituting ¢ for jin the call to to trim. One carried
a dependency on the elements of the array; the other did not. Aspect can
distinguish these two integers in the way they relate to the array elements.

Type declarations often make fewer distinctions than Aspect specifica-
tions. For example, the array operations size and low have the same type
- signature, but the Aspect specifications differ: for an array a, the results
depend on size(a) and low(a) respectively. Unlike Aspect, the type checker
cannot distinguish the operations bottom and low, because the bottom ele-
ment is an integer like the low index. Type abstraction and polymorphism
do make type checking a little more discriminating though; if the array were
polymorphic, bottom and low would indeed have distinguishable signatures.

The relationship between Aspect and more sophisticated type systems
(such as Typestate [Str83], FX [GJSO92] and ML refinement types [FP92])

is discussed in Section 9.2.

1.45 Programming Language Design

Type checking is only one example of a general trend. A primary goal in
programming language design has been to limit the kinds of bug that go
undetected. This has been achieved in four ways: by removing features of
the language that are notoriously hard to use correctly, by providing extra
features that simplify code, by catching errors during the execution and by
detecting flaws at compile-time.

1.4. A BRIEF SURVEY OF BUG-ELIMINATION SCHEMES 27

CLU, for example, eliminates global variables, stack allocation of abstract
objects and manual deallocation of objects. These are responsible for many
initialization errors’. It provides exception handling—a major advance over
checking return status; iterators, which allow operations to be performed
on the elements of indexed structures without any explicit indexing; and
dynamic arrays, which are designed so they cannot contain “holes”. Variables
can be declared at the point of use, which further reduces the incidence
of initialization errors. The run-time system detects array bound errors,
arithmetic overflow and unhandled exceptions. The type system is strong,
so all type errors are caught by the compiler, and has no loopholes®.

CLU’s most significant design feature is its support of data abstraction.
Localizing and encapsulating the representation of an abstract type simplifies
the programs that use the type. The CLU compiler restricts access to a
type’s representation to a select set of procedures® and distinguishes different
abstract types with the same representation.

Older programming languages, and languages like C that are intended
for low-level applications, cannot detect or prevent most of the bugs that
are ruled out by CLU. Free-standing tools have been built to find anomalies
(flaws that are likely to be bugs) in these languages. DAVE [FO76], designed
for Fortran, used regular expressions to express the orders in which elemen-
tary operations could occur; its ideas have been applied more recently to
C [WOS85). Bergeretti and Carre’s technique [BC85] is similar, finding dis-
crepancies in a dataflow matrix relating all the instances of variables and
expressions in a procedure.

Cesar [0089] is an extension of DAVE that allows the user to define path
expressions for the permissible sequencing of operations. This kind of analysis
applies to modern languages too, but it is not clear how frequent sequencing
errors of this kind are for user-defined operations. Primitive objects may
have a stylized pattern of usage—a read-only file must be opened, read and
then closed—but the operations of a set, table, queue or stack are not so
constrained. The more serious problems of Cesar are its spurious messages
and the impractical global analysis it requires. These issues are revisited,
along with a discussion of a related technique [How90], in Section 9.2.

Liskov explains why in [Lis92).

8For example, variants do not cause trouble as in Pascal, because of the way objects
are designed.

®Most of the time. ‘Rep exposure’ can beat the type checker [LG86].

28 CHAPTER 1. INTRODUCTION

1.5 The Organization of the Thesis

Chapter 2 explains the basic idea of dependencies between aspects. A proce-
dure specification plays two roles: in checking its own code and in checking
the code of its callers. To check remove_dupls, for example, the checker uses
not only the specification of the remove_dupls procedure itself, but also the
specifications of the built-in operations + and arrayfint/$low.

Chapter 3 introduces pointers and container objects (like arrays and sets).
Pointers lead to aliasing, which wreaks havoc with the dependency analysis.
The problem is solved with a special kind of aspect to represent pointers,
and a second kind of assertion called a ‘binding’ that says how a procedure
may change the shape of the store.

Chapter 4 refines the definitions of the assertions introduced in Chap-
ters 2 and 3. It exposes some implications that have been hidden until this
point. By being careful about the interpretation of object names in asser-
tions, we see how interactions between assertions can be avoided so they
retain their declarative meaning. Refining the definitions of the assertions
also allows the checker to catch more bugs than the simplified presentation
of Chapters 2 and 3 suggests.

Chapter 5 explains abstraction functions. The specifier of an abstract
type invents a set of aspects and uses them to specify each abstract operation.
This allows clients to be analyzed in abstract terms that are independent of
how the type is implemented. To check the code of the abstract operations
themselves, though, the checker needs to know how the abstract aspects are
related to the aspects of the representation. The chapter explains how this
information is provided and what the checker does with it.

Chapter 6 formalizes the ideas of the previous chapters. The meaning
of the assertions is defined in terms of transitions over abstract states. The
program constructs of CLU are defined in the same way, so that whether a
procedure’s code meets its specification is reduced to a mathematical conjec-
ture.

Chapter 7 describes the mechanism of the checker. Even within the As-
pect model, approximations are made; the checker executes the code over
states that each represent a set of Aspect states.

Chapter 8 starts by relaxing two constraints that are assumed up to this
point: that the aspects of a type be independent and that specifications of
called procedures be provided. It then discusses some limitations of Aspect

1.5. THE ORGANIZATION OF THE THESIS 29

and speculates on how they may be overcome.

Chapter 9 concludes the thesis. It describes my experience using Aspect,
compares Aspect to related work and summarizes its contributions.

The essence of the thesis is conveyed in Chapters 2, 3 and 4. Chapter 6
contains nothing new: it merely formalizes the ideas of previous chapters and
fills in some details that had been left to intuition. I have also tried to avoid
backward references in the concluding chapter, so there is something to be
gained from reading the introduction and conclusion alone.

CHAPTER 1. INTRODUCTION

Chapter 2

Aspect Dependencies

This chapter explains the basic principle of Aspect’s bug detection scheme.
The programmer specifies a division of the objects of each type into ab-
stract components called “aspects”, and then gives, for each procedure, a
set of dependencies that are required to hold between the aspects of the
pre- and post-states. The checker finds dependencies that are required but
missing from the code. A missing dependency means that a result is com-
puted without adequate information and that there must thus be a bug (or
a specification flaw).

A series of tiny examples based on an editor buffer illustrates these ideas.
We shall see how each procedure specification plays two roles but has only
a single meaning. Then we look at a more complicated example in some
detail to understand how one writes an Aspect specification and what sort of
bugs can be caught. Tinally, we see how aspect dependencies take account
of control flow too.

2.1 Editor Buffers

An editor is a program for writing and modifying documents. The text of the
document being edited resides in an object called the buffer, part of which is
displayed on the screen. The user makes changes to the document by altering
the buffer and then saving it in a file.

The buffer has a cursor indicating the point at which a character typed at
the keyboard will be inserted. It also has a mark, a kind of secondary cursor
usually not visible. The purpose of the mark is to delineate with the cursor
a portion of the text called the region. There are special commands that

31

32 CHAPTER 2. ASPECT DEPENDENCIES

operate on regions, such as “delete-region”, which deletes from the buffer the
characters between the mark and the cursor. The mark is set by placing the
cursor at the desired position and issuing the command “set-mark-at-cursor”;
the cursor is then moved elsewhere to define the region.

Finally, the buffer has a clipboard that contains a fragment of text cut
from the document to be reinserted later. The “cut-region” command deletes
the text in the region and places it in the clipboard (thereby eliminating
whatever was there before). By moving the cursor and issuing the command
“paste”, one can reinsert the cut text in a different place. The clipboard is
considered to be part of the buffer and not a separate object.

2.2 First Example: A Detectable Bug

Suppose we have an abstract type buf that models an editor buffer and pro-
vides operations like bufSget-mark for obtaining the current position of the
mark, buf$set_cursor for setting the position of the cursor, etc. Here is a
procedure that uses these operations:

exchange = proc (b: buf)
c: int := bufSget_cursor (b)
buf$set_-mark (b, c)
m: int ;= bufSget_mark (b)
buf$set_cursor (b, m)
end ezchange

It is intended to exchange the positions of the mark and cursor, but it fails
for a simple reason. By resetting the mark before saving its old value, the
procedure sets the cursor to the new mark position instead of the old one,
thus leaving the cursor unchanged.

We can formulate this reasoning in Aspect as follows. The final position
of the cursor should depend on the initial position of the mark, but there is
no such dependency in the code. The Aspect specification of the procedure
is:

exchange = proc (b: buf)
%@ mark(b) «— cursor(b)
%@ cursor(b) — mark(b)

2.3. THE SPECIFICATION OF THE BUFFER TYPE 33

It contains two dependency assertions. The expressions on the left refer to
the post-state and those on the right to the pre-state. The first assertion says
that the mark of the buffer in the post-state should depend at least on the
cursor in the pre-state; the second assertion says that the post-state cursor
depends on the pre-state mark. In response to the procedure annotated with
this specification, the checker would display the message:

Missing: cursor(b) on mark(b)

In contrast, the dependency of the first assertion is found and so no message
is produced for it.

The checker cannot perform this analysis with the code and its annotation
alone—it must know how the called procedures affect the cursor and mark.
This information is derived from the Aspect specification of the buffer type.

2.3 The Specification of the Buffer Type

Part of the specification of the buffer type is shown in Figure 2.1. Immedi-
ately following the header, the four aspects of a buffer are listed: tezt, clip,
cursor and mark. Every buffer is subsequently viewed in terms of these four
aspects. The text aspect of a buffer b is written tezt(b), and denotes the text
contained in b; clip(b) denotes the contents of its clipboard, and so on.

Each operation of the type is given a specification just like the specifica-
tion of exchange: a claim that certain minimal dependencies hold between
the aspects of the pre- and post-state.

The set_mark specification, for instance, says that the value of the mark
of b in the post-state depends on the value of the argument ¢ in the pre-state.
Compare this to the specification of move_mark, which moves the mark by i
rather than setting the mark to i, and thus has a dependency of mark on its
old value.

The omission of assertions for the other aspects implies that they are
invariant, so the specification of set_mark implies that setting the mark does
not affect the text, clipboard or cursor. Similarly, since no aspect of b appears
on the left-hand side of an assertion of get_mark, we can infer that the entire
buffer b is unchanged.

The last operation of Figure 2.1, reset_cursor, resets the cursor to the top
of the buffer. Since cursor(b) is set to a constant, no dependences are given

34 CHAPTER 2. ASPECT DEPENDENCIES

buf = cluster is set_cursor, set_mark, get_mark, get_cursor, ...

%@ aspects tezxt, % textual contents of buffer

%@ clip, % contents of clipboard
%@ cursor, % displacement of cursor from top of buffer
%@ mark % displacement of mark from top of buffer

set_cursor = proc (b: buf, i: int)
%@ cursor(b) — i

set_mark = proc (b: buf, i: int)
%@ mark(b) « i

get_cursor = proc (b: buf) returns (int)
%@ result — cursor(b)

get_mark = proc (b: buf) returns (int)
%@ result «— mark(b)

move_mark = proc (b: buf, i: int)

%@ mark(b) «— i, mark(b)

reset_cursor = proc (b: buf)

%@ cursor(b) — 0

Figure 2.1: Part of the buffer specification

2.4. THE LACK OF INTERPRETATION OF ASPECTS 35

and the special symbol 0, denoting the empty list of aspect expressions, is
used.

Note that the specification nowhere defines a “meaning” for any of the
aspects. An aspect is just a name for a component of an object. The inter-
pretation of the aspects recorded informally in the comments alongside their
declaration is not part of the Aspect specification. The specification does not
even attribute types to the aspects, so although one can think of mark, for
example, as a function that can be applied to buffers, the result of applying
the function is not typed. To type-check the specifications, the checker gives
mark the signature

mark : buf — AspectRange

which allows it to reject an expression of the form mark(z) if z is not a buffer.
All aspect expressions have the type AspectRange, so a dependency assertion
a + 3 always type-checks when a and 3 type-check. But since no other type
matches AspectRange, nesting of aspect expressions is not allowed. Even if
we had an abstract type cursor with an aspect atStart, for example, we could
not form aspect expressions like atStart(cursor(b)).

The expression ¢ denotes the value aspect of the integer i. When a type is
not divided into aspects, its objects are considered to have a single “value”
aspect that has no name. Like the buffer aspects, the value aspect of integers
can be viewed as a function with the signature

value : int — AspectRange

Thus, when the expression i appears in an assertion, its type is AspectRange.
It would not be a type error to write, for example,

text(b) «— i

and later we shall come across such assertions.

No interpretation is given for the aspect< because none is needed. The
specifications make claims only about dependencies between aspects, and
these can be evaluated without recourse to their values.

2.4 The Lack of Interpretation of Aspects

The lack of a given interpretation for the aspects is the key to Aspect’s
economy. A conventional specification would give a model for the abstract-

36 CHAPTER 2. ASPECT DEPENDENCIES

type, representing a buffer as a sequence of characters, for example. The
specifications of the operations would then be in terms of this model; the
more complicated the model, the more complicated the specifications.

There are principally two costs of the modelling: the writing of the spec-
ifications and their analysis. Just writing a buffer specification is a diffi-
cult exercise, challenging enough to be the subject of research papers in
specification!. Analysis is expensive because it cannot be automated. To
prove any interesting property of a sequence of characters will require the
skills of a mathematician: inventing lemmas and finding proof strategies.
Aspect specifications, on the other hand, are relatively easy to write and
code checking is automatic.

2.5 The Two Roles of Specifications

Specifications play two roles. The specification of exchange is a yardstick
against which its implementation may be judged. In contrast, the specifica-
tion of a buffer operation like get_cursor is used to summarize its behaviour
when checking procedures that call it, like exchange. All Aspect procedure
specifications can play both roles.

There are many reasons why a specification is used as a summary of
a procedure’s dependencies in preference to its code. First, the code may
simply not be present, either because it has not yet been written, or because
the procedure is built-in. Second, the code might be wrong; we want to
find bugs in a procedure independently of the bugs in the procedures it calls.
Third, an operation of an abstract type will be implemented with some other
type whose aspects are different: the aspect mark, for instance, might not
represented directly in the representation of a buffer. This issue is discussed
in Chapter 5.

2.6 Specifications Express Extra Information

These reasons for preferring the specification of a called procedure to its
code would apply to any specification language. Another reason arises for
Aspect specifications in particular: a specification of a procedure may include
information that the checker cannot infer from its code.

1[Suf82], for example.

2.6. SPECIFICATIONS EXPRESS EXTRA INFORMATION 37

Suppose ezxchange were implemented with a call to a new procedure
set_mark_at_cursor:

ezchange = proc (b: buf)
%@ mark(b) « cursor(b)
%@ cursor(b) «— mark(b)
set_mark_at_cursor (b)
m: int := bufSget_mark (b)
buf3set_cursor (b, m)
end exchange

Here is the code for the called procedure:

set_mark_at_cursor = proc (b: buf)
c: int := bufSget_cursor (b)
m: int := bufSget_mark (b)
buf$move_mark (b, ¢ — m)
end set_mark_at.cursor

The checker could not find a bug in ezchange given only the code of the
two procedures, even though ezchange has the same bug as before. The rea-
son is that the dependency previously missing (of the new cursor on the old
mark) is actually present, because of the way set.mark_al_cursor is imple-
mented. The expression ¢ - m depends on the values of cursor and mark
before the call to set.mark.at_cursor, and so the mark that results from the
call will depend on the initial mark. The missing link that gave away the
bug before has now reappeared.

Suppose, however, that we provide a specification for the called procedure:

set_mark_at_cursor = proc (b: buf)

%@ mark(b) — cursor(b)
The checker now finds the bug in ezchange and prints out the message
Missing: cursor(b) on mark(b)

The specification of set_mark_at_cursor tells the checker that the dependency
of mark(b) on mark(b) is accidental; only the dependency on cursor(b) is
required. As a result, one of the specified dependencies of exchange is now
found to be missing, since it is no longer masked by the extra dependency of
set_mark_at_cursor.

38 CHAPTER 2. ASPECT DEPENDENCIES

2.7 Two Interpretations of Dependency Assertions

The checker interprets the specification of a called procedure differently from
the specification of a procedure being checked. In our example, the specifi-
cation of ezchange gives minimal dependencies, whereas the specification of
set_mark_at_cursor gives maximal dependencies.

These are two sides of the same coin. A specification of a procedure says
that an implementation is valid if it has at least certain dependencies. In
calling the procedure, the checker can assume it has no more (since a valid
implementation is required only to have the minimum), but in checking the
procedure, it can demand that there be no fewer.

A valid implementation may have more dependencies than its specifi-
cation requires. The specification of set_mark_at_cursor, for instance, only
requires mark(b) to depend on cursor(b), and yet the implementation—which
is correct—has an extra dependence of mark(b) on mark(h). In analyz-
ing ezchange, however, the checker assumes such dependencies are miss-
ing. The code of exchange must work for any valid implementation of
set.mark_at_cursor, and it is mere accident that this implementation has
extra dependencies.

The reader may be troubled by this argument. A full specification of
move_mark (b, i) would give the final position of the mark as m + ¢, where m
is its initial position. If the increment 7 is ¢ — m, the resulting mark position
is

m+4+c—m=c

which is independent of the initial position. Why then do we say that set-
MarkAtCursor has a dependency of mark(b) on mark(b)?

Dependencies in Aspect are a syntactic notion. When we talk of a de-
pendency of o on 3, we mean that there is some path through the code in
which the value of 3 is read and used in the computation of a. This syntac-
tic dependency does not imply a semantic dependency—that a change in the
initial value of 3 can affect the final value of a. Nevertheless, the converse is
true: there can be no semantic dependency without a syntactic dependency.
This is what makes the Aspect checker sound.

In terms of semantic dependencies, a procedure specification gives the
exact dependencies that are required. The code may have no more and no
fewer. The checker, however, can only approximate the semantic dependen-

2.8. SECOND EXAMPLE: MORE DETAIL 39

cies. Its approximation is an upper bound, so it can only conclude an error
when there are fewer apparent dependencies than required. In attempting
to find missing dependencies, it infers from the specifications of called pro-
cedures that some dependencies are not present, and from the specification
of the procedure being checked that some must be present.

We shall see later that part of the difficulty in approximating semantic
dependencies accurately is that there may be several paths through the code.
Some of these may not be possible, but the checker cannot rule them out,
since it does not have enough information to evaluate conditionals. The
above example illustrates, though, that the problem arises even in straight-
line code. Exact semantic dependencies cannot be calculated without full
specifications of called procedures.

2.8 Second Example: More Detail

The bug in the ezchange procedure was detectable because of a missing de-
pendency of the cursor on the mark. These happen to be represented as
integers in the procedure, but this has no relevance to the Aspect checking.
To make this point clear, we now look at an example that uses the other
buffer aspects, clip and text.

The Aspect analysis will be seen to be exactly the same as that performed
for cursor and mark, no more complex in its semantics nor less efficient in the
checking computation. This should illustrate more convincingly the economy
gained by treating aspects as components without values. In a conventional
treatment of correctness, going from assertions about integers to assertions
about text fragments would entail a leap in complexity; in Aspect, it does
not.

Consider a procedure zap with the signature

zap = proc (b: buf, c: char)

that deletes the portion of the text in the buffer b between the cursor position
and the next instance of the character ¢, and places this “zapped” text in
the clipboard. Figure 2.2 shows a zapping scenario. The text is the large
box on the left and the clipboard is the smaller box on the right; the cursor
precedes the character with the tiny box around it.

BEFORE:

CHAPTER 2. ASPECT DEPENDENCIES

He scorned the vague, the tame, the color-
less, the irresolute. He felt it was worse to
be irresolute than to be wrong. I remem-
ber a day in class when he leaned far for-
ward, in his characteristic pose—the pose
of a man about to impart a secret—and
croaked, “If you don’t know how to pro-
nounce a word, say it loud!” This comical
piece of advice struck me a[s] sound at the
time, and I still respect it. Why compound
ignorance with inaudability? Why run and
hide?

AFTER zapping to “t”:

Omit needless words!
Omit needless words!
Omit needless words!

He scorned the vague, the tame, the color-
less, the irresolute. He felt it was worse to
be irresolute than to be wrong. I remem-
ber a day in class when he leaned far for-
ward, in his characteristic pose—the pose
of a man about to impart a secret—and
croaked, “If you don’t know how to pro-
nounce a word, say it loud!” This comical
piece of advice struck me the time, and
I still respect it. Why compound ignorance
with inaudability? Why run and hide?

| s sound a |

Figure 2.2: A zapping scenario

2.8. SECOND EXAMPLE: MORE DETAIL 41

How should we specify zap? One way to start is to list the aspects of the
argument objects. Characters have only a single aspect, which therefore has
no name, and so c is the sole aspect of the variable c. The buffer aspects are

cursor(b), mark(b), text(b), clip(b)

Zapping does not move the cursor. It ends up on a different character because
text ahead of it is deleted, not because its position with respect to the top
of the buffer is moved. The character ¢ is certainly not modified?. There
are thus only two aspects that change: tert(d) and clip(b). The clipboard’s
pew contents are the zapped text, which is defined by the character ¢, the
position of the cursor and the text of the buffer, and so we write:

clip(b) « tezxt(b), cursor(b), c

Note that the aspect clip(b) in the post-state does not depend on its value
in the pre-state, because the zapped text replaces rather than extends the
old contents of the clipboard. The text of the buffer, on the other hand, is
altered by the deletion, but the rest of the document is retained, so we have:

text(b) « text(b), cursor(h), c

Here now is an attempt to-implement zapping in a procedure that makes
use of existing buffer operations, annotated with our specification:

zap = proc (b: buf, c: char)
%@ clip(b), text(d) « text(), cursor(b), ¢
k: int := buf$search (b, c)
buf8set_mark (b, k)
bufScut_region (b)

end zap

The assertions of clip(b) and text(b) have been joined since they share the
same dependencies. The shortened form is identical in meaning to the two
individual assertions.

The code works by setting the mark to the zap character, so that the
region contains the text to be zapped. A call to cut-region is then enough
to delete the zapped text from the document and copy it to the clipboard.
In fact, however, the code does not satisfy its specification, and the checker
would find a bug. We now take a look in more detail at how the bug is found.

2And in fact, since characters are immutable in CLU, it would make no sense to claim
that ¢ changes.

42 CHAPTER 2. ASPECT DEPENDENCIES

buf = cluster is ..., search, cut_region, del_region, ...
%@ aspects tezt, clip, cursor, mark

search = proc (b: buf, c: char) returns (int)
%@ result «— cursor(b), text(b), ¢

cut_region = proc (b: buf)
%@ mark(b), cursor(b) «— mark(b), cursor(b)
%@ clip(b), text(b) « text(d), mark(b), cursor(b)

del_region = proc (b: buf)
%@ mark(b), cursor(b) «— mark(b), cursor(b)
%@ text(b) — text(b), mark(b), cursor(b)

Figure 2.3: More of the buffer specification

2.9 Calculating Dependencies

We shall need the specifications of the other buffer operations (Figure 2.3).
Note that the set of aspects

text(b), mark(b), cursor(b)

appears in both cut_region and del_region, since it represents the region.
But del_region deletes the region from the text and leaves the clipboard un-
changed, so unlike cut_region it gives no assertion for clip(b).

The dependencies of the code are constructed using these specifications as
follows. First, the checker divides the argument objects b and ¢ into aspects
according tc the specifications of their types (Figure 2.4). The five aspects
of the argument objects (four for b and one for ¢) are then assigned tags, so
that we can trace the flow of these aspects through the code. Integers are
convenient, but any set of distinguishable labels would do.

The checker performs a kind of symbolic execution of the procedure. To
find the result of the first statement

k: int := buf§search (b, c)

2.9. CALCULATING DEPENDENCIES 43

b

text | clip

o)le)

Figure 2.4: Dividing arguments into aspects

Initial state

c
text | clip | car q @
O|9|0|@

State after k := search(b,c)

° k c
) ® ©
L @ ©

Figure 2.5: The first state transition of the abstract execution

b

it looks up the specification of the search operation and constructs the new
state shown in the second row of Figure 2.5. The integer k has been allocated
and tagged to show its dependence on the aspects of the initial state. The
tags are obtained simply by “executing” search’s dependency assertion

result — cursor(b), tezt(b), c

which can be read operationally as “give the (sole aspect of the) result the
tags of cursor(b), text(b) and ¢”. The aspects of b keep their old tags, since
there are no assertions for b (it being invariant).

A dependency is not really a property of an individual state, but a rela-
tionship with an earlier state: here, the initial state. And yet the tagging of

44 CHAPTER 2. ASPECT DEPENDENCIES

a state allows us to think of the state’s dependences on the initial state as a
kind of abstract value. This is known (in abstract interpretation jargon) as
“instrumenting” the state. It is convenient for reasons that will not become
clear until later?.

The remaining two statements are executed similarly (Figure 2.6). Note
how set_mark leaves all aspects but the mark invariant and how cut.region
introduces the dependence of the tezt on ¢. The final state of the execution
represents the dependences of the aspects of the post-state on the aspects of
the pre-state. All that remains is to assess it against the specification.

To do this, we construct a post-state from the specification of zap, in the
same way that we “executed” the specifications of the buffer operations. The
resulting state is shown with the final state of the code in Figure 2.7. To
find the missing dependencies, the checker takes each aspect of the required
post-state in turn and subtracts from its set of tags the tags of that aspect
of the final state. This gives a “difference” state whose tags indicate bugs in
the code.

The difference state has one tag, corresponding to an omission of the
dependency

mark(b) on mark(b)

This dependency was implicit in the specification because mark(b) appeared
on the left-hand side of no assertion and was therefore taken to be invariant.
If the new mark is equal to the old mark, it must depend on it.

Incidentally, we have here another exaiuple of the specification’s express-
ing information not derivable from the code. The final state not only has
missing dependencies, but extra dependencies too: cursor($) on text(b) and
c. These are syntactic and not semantic dependencies, by the following ar-
gument. The search operation looks forward and not backwards, and so &
must represent a position ahead of the cursor. Executing cut_region affects
the cursor only when the mark is behind it; but in this case, it is guaranteed
to be ahead of it, and so the cursor is invariant.

This bug is a specification error; we forgot to consider the mark. If the
mark follows the zap character, we probably want it to move backwards in

3A preview for the impatient: alias analysis can be smoothly integrated (Chapter 3)
and relationships between aspects can be represented in the tag sets (Section 8.1). Tagging
is also easily adapted to richer analyses, such as program slicing, in which the tags of an
aspect can represent program lines in which that aspect is modified.

2.9. CALCULATING DEPENDENCIES 45

Bf \
N
\e: |

e

Figure 2.6: The calculation of dependency states for the code of zap

Final code state Specification (required) state Difference state

BB D

Figure 2.7: The comparison of the final state and required state

46 CHAPTER 2. ASPECT DEPENDENCIES

zap = proc (b: buf, c: char)
%@ clip(b), text(b) « text(b), cursor(d), c
%@ mark(b) — cursor(b)
k: int := bufSsearch (b, c)
buf$set.mark (b, k)
bufScut_region (b)
set_mark_at_cursor (b)
end zap

e W D M~

|| Error | Missing Dependencies |

swap lines 2 & 3 clip(h), text(h) — c

swap lines 3 & 4 clip(b), tezxt(b) — ¢
omit line 3 clip(b), text(b) — text(b), cursor(h), c
omit line 4 clip(b), text(b) « text(b), cursor(d), c

del_region/cut_region | clip(b) — text(b), cursor(b), ¢

Figure 2.8: Some bugs detected in zap

the buffer with its associated character. If it falls within the zapped text, it
is not at all clear where it should go. Perhaps the simplest solution would
be always to set the mark to the cursor position:

mark(b) « cursor(b)

2.10 A Colony of Bugs

The corrected version of zap is shown with its new specification in Figure 2.8.
The table shows the messages that would be generated by the checker for
some faulty variants of the code.

Three classes of error are illustrated: omissions, misorderings and sub-
stitutions. Since the essence of the Aspect scheme is to find missing depen-
dencies, omissions are particularly likely to be caught; in fact, omission of
any line of zap is detected. But other kinds of error often lead to missing

2.11. CONTROL DEPENDENCIES 47

zap_local = proc (b: buf, c: char)
%@ clip(b), text(b), mark(b) «— text(b), cursor(d), mark(bh), c
%@ clip(b} — clip(b)
k: int := buf$search (b, c)
m: int := buf$get_mark (b)
tfk < m then
bufset_mark (b, k)
bufScut_region (b)
set_mark_at_cursor (b)
end
end zap_local

Figure 2.9: Aspect control-flow dependencies

dependencies too.

The errors shown here would not have been detected by existing static
analysis schemes. A dataflow anomaly detector that finds misorderings like
references to uninitialized variables could not identify the ones here, nor could
a type checker catch the substitution errors. The Aspect checker finds them
all quickly without user intervention.

2.11 Control Dependencies

Aspect dependencies do not only arise from the flow of data. Figure 2.9
shows an example of a procedure with an aspect dependency caused by the
branching of an if-statement.

The function of zap_local (b, c) is to zap to the first occurrence of the
character ¢ only if it lies before the mark; otherwise it does nothing. Its
specification differs from that of zap (Figure 2.8) by having the extra depen-
dency assertions

text(b), clip(b) + mark(b)
mark(b) — mark(b), text(b), c
clip(b) « clip(b)

48 CHAPTER 2. ASPECT DEPENDENCIES

The source of the aspect dependencies is not reflected in the form of the
assertion; no caller of the procedure can observe whether a dependency is a
flow dependency or a control dependency.

How are these assertions satisfied? The checker adds control dependen-
cies of every aspect modified in the body of the if-statement on the result
of the if-test. The modified aspects—clip(b), tezt(b), mark(b)—come from
the specifications of the called operations: they are all the aspects that are
not invariant because they appear on the left-hand side of an assertion. The
outcome of the conditional expression depends on k and m (from the speci-
fication of <) which in turn depend on tezt(b), cursor(b), mark(d) and c in
the pre-state (from the specifications of search and get_mark).

If-statements raise another issue in the dependency calculation. Since
there are two paths an execution may take through the procedure, there are
two possible final dependency states. The checker must account for depen-
dencies due to either path, so it forms a single state that merges the depen-
dency sets of the aspects of the two states. In general, this over-estimates the
dependencies since it includes paths that can never occur, but since an error
message is generated only for missing dependencies it never causes spurious
reports. :)

Loops are handled in a similar way. The conditional test introduces con-
trol dependencies, and the resulting dependencies of all possible paths have
to be merged. Although there are an infinite number of paths, there are a
finite number of aspect dependencies, so the checker terminates when merg-
ing the dependencies of the resulting state of an iteration adds nothing new.
In the worst case, the number of iterations is the square of the number of
aspects (since each iteration adds a dependency, and each aspect can depend
at most on every other aspect). In practice, though, the evaluation of loops
terminates after two or three iterations.

2.12 Specifying and Checking Exceptions

CLU, like some other modern programming languages, provides an exception
mechanism. The procedure of Figure 2.10 is like zap.local, but instead of
doing nothing when the character lies beyond the mark, it signals cannot.
The two cases corresponding to the branches of the if-statement are not
merged into a single state this time, because which branch is taken is ob-

2.12. SPECIFYING AND CHECKING EXCEPTIONS 49

zap_local2 = proc (b: buf, c: char) signals (cannot)
%@ clip(b), text(b) « text(b), cursor(b), ¢
%@ mark(b) «— cursor(b)
%@ except cannot: mark(b) — cursor(b)
%@ depending on cursor(b), mark(b), text(d), c
k: int := bufSsearch (b, c)
m: int := bufSget_mark (b)
ifk < m then
buf$set_mark (b, k)
buf$cut_region (b)
set_.mark_at_cursor (b)
else
signal cannot
end
end zap_local2

Figure 2.10: Specifying exceptional dependencies

servable in the calling context of the procedure. Instead, the specification
separates the dependencies for the two ways in which the procedure can re-
turn, and the checker assesses them individually. The aspects that determine
whether a signal is raised must also be specified (in the depending on clause).

The assertion for the signal case claims that mark(b) should depend on
cursor(b); this dependency arises only for the normal case, so an error mes-
sage

Missing for signal ‘cannot’: mark(b) on cursor(b
) g

is displayed.

Exceptions are a boon to Aspect because they factor distinctions in the
outcome of a procedure into the control flow, where they are amenable to
static analysis. If a procedure is not structured into exceptional cases, the
dependencies must be grouped together and the checker cannot be so dis-
criminating.

To check code that calls procedures that raise exceptions, the checker
must maintain a separate dependency state for each flow of control. These

50 CHAPTER 2. ASPECT DEPENDENCIES

are handled like the results of the branches of an if-statement, but their
merging is trickier. Each exceptional state is matched to its appropriate
handler; the resulting states after the exceptions have all been handled can
then be merged together.

Consider this calling context for example:

zap_local2 (b, c)
except when cannot:
failed := true
buf8del_region (b)
end

If c is beyond the mark, zap_local? signals cannot, control passes to the han-
dler, the variable failed is set to true and the region is deleted. If ¢ precedes
the mark, the usual zapping occurs and the handler is not executed. To
construct the dependencies of this code, the checker obtains two states from
zap_local?'s specification. It evaluates the handler from the exceptional state;
the other state (for the normal case) is merged with the state at the end of
the handler.

Whether zap_local? signals or returns normally also gives a control de-
pendency in this calling context. The depending clause of the specification
therefore says which aspects determine the kind of termination, and, like the
aspects governing the outcome of an if-statement’s condition, these give fur-
ther dependencies of the aspects modified in the handler. The value aspect
of failed, for instance, will depend on cursor(b), mark(b), text(b) and c.

2.13 Summary

In this chapter, we have seen how a specification of aspect dependencies can
be used to find bugs in a procedure. Checking involves the calculation of
a maximal set of dependencies; these are compared to the minimal require-
meats of the specification and any missing dependency is taken to be evidence
of a bug.

This only works because of the notion of an aspect. We would find few
bugs as missing dependencies otherwise and these would usually be anoma-
lies: not many procedures have results that do not depend in some way on
all their arguments. Dividing an object into components enriches the depen-
dency structure enough to catch interesting bugs.

2.13. SUMMARY 51

A specification of a procedure plays two roles: as a criterion for checking
the precedure’s code and as a replacement for the procedure in checking its
callers. We saw how a specification is more than a summary; the specifier
can say that a dependency is missing (and is to be taken as accidental if
nonetheless it appears in the procedure’s code). This allows more bugs to be
caught.

An aspect is just a name for a component of an object. The choice of
aspects is left to the programmer or specifier. The more aspects, the more
bugs can be detected, but the more complicated the procedure specifications
become. The lack of interpretations for aspects makes specifications eas-
ier to write than conventional specifications and makes automatic checking
possible.

The soundness of this scheme rests on two assumptions:

1. The dependencies calculated by the checker include at least all the
dependencies that actually arise. In the absence of aliasing, this is a
property of the dependency algorithm we have described. Chapter 3
describes the more complicated construction necessary to deal with
aliasing.

2. The aspects of a type are independent. Aspects are more like projec-
tions than components; they can in fact overlap, but we assuined so
far that one cannot subsume another. If the cursor aspect could be
derived from the mark aspect, a requirement to depend on cursor(b)
could be discharged with a dependence on mark(b). This restriction is
relaxed in Chapter 8.

The parts of Aspect presented so far are not tailored to CLU. The notion of
aspects and aspect dependencies could be applied equally to LISP or Fortran.
Once we consider the structure of the store, fine differences in the semantics
appear and this is no longer true.

CHAPTER 2. ASPECT DEPENDENCIES

52

Chapter 3

Reference Aspects

In the last chapter, we saw how to catch bugs as missing dependencies be-
tween aspects. Although we talked of dividing an object into aspects, we
could equally well have have regarded aspects as components of variables.
We might then have explained cursor(b), for example, not as the cursor as-
pect of the buffer object called b, but rather the cursor aspect of the variable
b, and the analysis would have been the same.

Not all objects, however, can be named by program variables. The first
step we take in this chapter is to introduce a general naming scheme for
objects. By labelling the references between objects, we can name objects
arbitrarily deep in the program state. For example, if z is a variable that
names an object O, and O; has a reference r to another object O, then
we give O, the name z.r; if O; has a reference s to O, then O3 is called
z.r.s, and so on. These references are just another kind of aspect called
reference aspects. They come in two varieties: pointer aspects, for references
to single objects, and collection aspects, for references to sets of objects (like
the elements of an array).

Because of aliasing, we cannot determine dependencies reliably unless we
know what references there may be between objects. Specifications must give
values to reference aspects so that the set of possible aliases can be bounded.
This is expressed with binding assertions. The result is a more complicated
dependency calculation, in which the structures of objects, as well as their
dependencies, evolve.

Finally, there are allocation assertions to describe dynamic allocation: in
CLU, new objects may be created at runtime and existing objects, like arrays,
may grow. .

53

54 CHAPTER 3. REFERENCE ASPECTS

3.1 Pointer Aspects

So far we have only considered the aspects of objects named by program
variables. We found some bugs in zap with a specification on buffer aspects:

zap = proc (b: buf, c: char)
%@ clip(b), tezt(b) — text(b), cursor(d), ¢

Suppose now that we have an object w of an abstract type window that
contains references to two buffer objects, an upper buffer and a lower buffer,
and we want to specify the procedure

zap_in_upper = proc (w: window, c¢: char)

whose effect is a zap to character ¢ in the upper buffer of w. How can we say
this? We are stuck, because we have no way to talk about the zapped buffer,
the buffer objects having no names in the procedure header.

A pointer aspect is a special kind of aspect that denotes a reference to
another object. In the same way that we declared cursor to be an aspect of
buf, we can declare the window type to have two pointer aspects, upper and
lower:

window = cluster is ...
%@ aspects *upper: buf, *lower: buf

The stars mark the aspects as pointers. Also, the pointer aspects, unlike the
plain aspects of buf (such as cursor and tezt) have types. This specification
now allows us to form object names. Using the window variable w, we can
denote a buffer reached from w by w.upper, and refer to the aspects of that
buffer as cursor(w.upper), text(w.upper), etc.

In general, an object name is a variable followed by a sequence of pointer
aspects. For example, our editor may have a stack of windows s, and the
stack specification may define a pointer aspect top for the top element of
the stack. We can then write s.top for the top window of the stack, and
s.top.upper for the upper buffer of that window.

Terms like cursor(w.upper) are called aspect expressions. An aspect ex-
pression is formed from an aspect and an object name!. With this ability

1We shall see later that pointer aspects may also be applied to object names to form
aspect expressions like upper(w). The meaning of such an expression is the value of the
pointer. The distinction between upper(w), which is a property of the object w, and
w.upper, which is a name for a buffer object, is important and explained in detail later.

3.2. THE PROBLEM OF ALIASING 55

to name aspects of objects beyond those attached to variables, we can now
write our specification:

zap.-in_upper = proc (w: window, c: char)
%@ clip(w.upper), text(w.upper) «—
%@ text(w.upper), cursor(w.upper), c

and we move on to the question of how such a specification is checked.

3.2 The Problem of Aliasing

When aliasing can happen, the dependency calculation of Chapter 2 does
not work: it misses dependencies that are present. Aliasing lets dependen-
cies sneak in unnoticed, because a statement that appears to change some
variable may change other variables whose names do not appear in it. This
section shows how aliasing arises even in a reasonable implementation of
zap_in_upper.

Suppose the window cluster provides a procedure get_upper that, given a
window object, returns the upper buffer of the window. A bad specification
of get_upper is shown in Figure 3.1; it claims that each aspect of the resulting
buffer depends on the corresponding aspect of the upper buffer of w. We will
not be able to write the correct specification until Section 3.3. The code of
zap_in_upper, on the other hand, is fine. Its intention is that b become an
alias for the upper buffer of w, so that zap’s change to b is a change to the
upper buffer too. The assignment statement does not make a copy of the
buffer but makes b a name for the object returned by get_upper.

Running the checker on zap_in_upper with the specifications of Figure 3.1
will generate a flurry of messages such as

Missing: clip(w.upper) on text(w.upper)

showing, in fact, all the required dependencies to be missing. But the code
is nonetheless correct. Why then are these dependencies not found?

The dependency of an aspect like tezt(w.upper) should arise from the
execution of zap. But the dependency calculation will miss this, since w and
its components will be assumed to be invariant over the call to zap(b,c).

56 CHAPTER 3. REFERENCE ASPECTS

zap.in_upper = proc (w: window, ¢: char)
%@ clip(w.upper), text(w.upper)
%@ text(w.upper), cursor(w.upper), c
b: buf := window$get_upper (w)
zap (b,c)

end zap_in_upper

get_upper = proc (w: window) returns (buf)
%@ text(result) «— text(w.upper)
%@ clip(result) — clip(w.upper)
%@ cursor(result) «— cursor(w.upper)
%@ mark(result) — mark(w.upper)

Figure 3.1: A failure to specify aliasing in a called procedure

3.3 Binding Assertions

To solve this dilemma, the analysis of the code must take into account the
aliases that might hold at any point. The dependencies that are constructed
will then be determined in part by the aliasing. If a statement causes some
object z to acquire a dependency, and y is an object aliased to z, then y
must acquire that dependency as well.

Since a procedure can establish an aliasing, we need to be able to specify
this effect. Since the checker does account for aliasing, the messages it gener-
ates for zap.in_upper are due not to a deficiency in its mechanism but rather
to the specification of get.upper in Figure 3.1. That specification says that
the aspects of the resulting buffer depend on their counterparts in w.upper,
but this is not enough, since it allows implementations that return a copy of
w.upper. We need to say that the buffer returned is w.upper. The correct
specification

get_upper = proc (w: window) returns (buf)
%@ result() :— upper(w)

uses a binding assertion to say that the object named by the result is the
object that was initially named by the upper pointer aspect of w.

3.3. BINDING ASSERTIONS 57

So far we have insisted that aspects have no values; we only traced de-
pendencies between aspects. Aliasing forces a compromise. To say that two
objects are aliased is equivalent to saying that the pointers to those objects
(which may be variables or pointer aspects) have the same value. So a bind-
ing assertion defines the values of aspects of the post-state in terms of the
values of the aspects of the pre-state. The specification of get.upper can be
read as: ‘the value of the pointer result in the post-state is the value of the
upper pointer aspect of w in the pre-state’. In general, the binding asser-
tion a :— 3 says that there is an execution in which the value of the aspect
expression a in the post-state is equal to the value of 3 in the pre-state.

The pointer aspect upper thus has the signature

upper : window — buf-pointer
in contrast to a plain aspect like mark whose signature is
mark : buf — AspectRange

The distinction is purely pragmatic. It may well be a useful elaboration
of Aspect to allow specifications that give values to plain aspects?, but the
dependency scheme will work without it. Giving values to pointer aspects, on
the other hand, is crucial, because without it aliasing could not be described
and spurious bugs would be reported.

A final comment on the syntax of the binding assertion

result() :— upper(w)

is in order. The assertion a(p) :— b(q) always describes a change to the a
aspect of the object called p. The only change caused by get_upper is to the
environment which maps variable names to objects. It is convenient to regard
the variable names to be pointer aspects of the environment, and to regard
the environment as an object whose name is just the empty string. Thus
the aspect expression result() denotes the result aspect of the environment,
and its occurrence on the left-hand side of the binding assertion indicates a
change to the environment itself.

The aspect expression upper(w) denotes the value of the pointer aspect
of the object w. This is to be distinguished from w.upper, which is an object

2This is discussed in Section 8.6.

58 CHAPTER 3. REFERENCE ASPECTS

name for the buffer reached by dereferencing that pointer. The value of
upper(w) can also be set by a binding assertion, such as in the specification
of window$set_upper(w, b) which binds the upper buffer of w to b:

set_upper = proc (w: window, b: buf)

%@ upper(w) :— b()

Here it is clear why upper(w) rather than w.upper is written on the left-hand
side: the object that is modified is w and not the buffer w.upper3.

3.4 Graph Evaluation

Now that pointer aspects are given values by binding assertions, the checker
has to keep track of them. A new state is needed—a graph will do. Figure 3.2
shows the initial state of zap_in_upper. Each node (oval) represents an object;
the rectangle at the root of the graph is the environment that maps the
formals of zap-in_upper to objects. The objects are divided into aspects in
the same way as before, but now each aspect may have both dependences
and values. The values are recorded below the horizontal line dividing the
box. For the plain aspects, the values are not known, so they are written as
question marks. The values of the pointer aspects are locations (or identities)
of other objects and are recorded as edges of the graph.

Starting at the top, we see that the variables (pointer aspects of the
environment) have values that are the locations of two objects: ¢ points to a
character object with a single (unnamed) aspect, and w to a window object.
The window object has two pointer aspects upper and lower, whose values
are the locations of two buffer objects, each of which is divided into four
plain aspects.

To execute the first statement

b: buf := window$get_upper (w)

3The reader may still wonder why upper(w) need be written on the right-hand side in
the specification of get_upper, instead of defining the syntax so that resull() :— w.upper
means ‘make the result point to the object called w.upper. The reason is simply to avoid
the L/R-value complication of programming languages. An assertion that says that the
upper buffer is unchanged would then have to be written awkwardly as

upper(w) :— w.upper
instead of upper(w) :—~ upper(w).

3.4. GRAPH EVALUATION

low

Fext

clip

csr

mk

®®

?

?

Figure 3.2: The initial state of zap_in_upper

clip

O

mk

®

)

?

?

59

ST O -

upp} low

A
»

Roxt

®

clip

)

csr

mk

®

?

?

?

?

ext

clip

Q@

csr

@

mk

@

) (B

?

?

?

CHAPTER 3. REFERENCE ASPECTS

Figure 3.3: The state following b: buf := window$get_upper (w)

3.4. GRAPH EVALUATION 61

zap = proc (b: buf, c: char)
%@ clip(b), text(b) — text(b), cursor(d), c
%@ mark(b) — cursor(b)

Figure 3.4: The specification of zap

the checker looks up the specification of get_upper, which contains the sin-
gle binding assertion result() :— upper(w), and executes it by extending the
environment with the variable b and then setting b()’s value to the location
denoted by upper(w). The resulting state (Figure 3.3) has two edges inci-
dent on one of the buffer objects. This is aliasing: the buffer has two names
(w.upper and b), and a change under one will appear to be a change under
the other too.

This happens in zap_in_upper’s next statement, zap(b,c). The checker
executes the dependency assertions of zap procedure’s specification (repeated
in Figure 3.4) as described in Chapter 2. Since the object names have been
bound dynamically, the first step in finding the appropriate tags is to locate
the objects. For example, to set the new tags for clip(b) from the assertion

clip(b) — text(d), cursor(b), c

the checker first locates the objects b and ¢ by looking up the variables in the
environment (i.e., following the arcs from the root). Each aspect expression
on the right yields a tag and these are written into the dependency box of
the clip aspect of the object b, replacing the previous tag®.

This gives the final state (Figure 3.5), which is checked against the spec-
ification '

zap.in_upper = proc (w: window, c: char)
%@ clip(w.upper), text(w.upper) «—
%@ text(w.upper), cursor(w.upper), c

by looking up the dependences of the aspects of the object w.upper. For
example, clip(w.upper) contains the three tags numbered 3, 6 and 8, which
include the initial tags of the three aspects text(w.upper), cursor(w.upper)
and c¢ obtained from the initial state (Figure 3.2).

4For reasons that are discussed in Chapter 4, the checker includes other tags too.

62

e

low

oxt

©

clip

O

csr

@

mKk

@

?

?

?

?

CHAPTER 3. REFERENCE ASPECTS

Figure 3.5: The final state of zap.in_upper

3.5. CHECKING BINDING ASSERTIONS 63

swap = proc (w: window)
%@ upper(w) :— lower(w)
%@ lower(w) :— upper(w)
u: buffer := window$get_upper (w)
window$set_lower (w, u)
window$set_upper (w, window$get_lower (w))
end swap

Figure 3.6: Checking a binding assertion

3.5 Checking Binding Assertions

We have only seen binding assertions in the specifications of called procedures
(such as get_upper). Recall, though, that all specifications play two roles: not
only do they provide information about -a procedure for checking its callers,
but they also give the criteria for checking the procedure itself.

Consider the procedure swap which is intended to swap the upper and
lower buffers of a window. Its specification and a candidate implementation
are given in Figure 3.6. The checker evaluates the code and then examines
the values of the upper and lower pointers of w in the final state. The value
of upper is required by the specification to be the value that lower had in the
initial state, and vice versa.

This test is analogous to the dependency test. There, to test the assertion
a+— 3, we checked that the final tags of the aspect a’s dependences were a
superset of the initial tags of the aspect 5. Here, to test the assertion a:— S,
we check that the possible final values of the pointer aspect o are a superset
of the initial value of 3.

The swap procedure does not satisfy its first assertion, and the checker
would display

Missing: upper(w) :— lower(w)

64 CHAPTER 3. REFERENCE ASPECTS

3.6 Collection Aspects

The aspects of an object are determined by its type. They are a fixed set,
the same for every object of the type®. The pointer aspects are no different
from the rest, and can thus only refer to a fixed number of objects. This
raises a problem for objects like sets, arrays and lists that can grow as the
program executes. It is not acceptable to provide a large but fixed number
of pointer aspects; even arrays in CLU can grow without bounds.

A collection aspect is a reference aspect that denotes a set of references.
This set is not bounded, so a single collection aspect may represent any
number of references to other objects.

A stack for example might have three aspects (Figure 3.7). The first, size,
is a plain aspect denoting the number of elements in the stack. The second,
top, is a pointer aspect that represents the location of the top element of the
stack. The third, rest, is a collection aspect representing the set of locations
of the remaining elements. The classification of the aspects is indicated by
stars: none for a plain aspect, one for a pointer and two for a collection.

Let us examine the operations in turn. The new operation allocates a
new stack and returns it; it is discussed in Section 3.8. The first assertion of
push places the element e at the top of the stack. The third assertion just
says that the size of the stack after a push depends on its size before.

The second assertion is more interesting. It says that the set of objects
that are below the top of the stack afterwards include whatever was below
before, plus the element that was previously on the top. The two expressions
on the right-hand side can be thought of as defining two possibilities for an
element that is in rest(s) after: either it came from an element in rest(s)
before, or it was on the top of the stack. In general, a binding assertion gives
a set of possibilities.

The pop operation is similar to push. The top element is returned by

5In explaining the syntax of binding assertions such as
result () :— b

we said that the program variables are regarded as pointer aspects of the environment,
which could be viewed as an object. The number of variables in scope may grow and
shrink, however. The analogy of variables as aspects does not stretch this far; its only
point was to motivate the syntax. The formal semantics treats the environment as a
distinct entity unlike any object in the store.

3.6. COLLECTION ASPECTS

stack = cluster [t: type] is new, push, pop, top, size

%@ aspects

%@ size, % number of elements in stack
%@ *top: t, % the top element
%@ **rest: t % the remaining elements

new = proc () returns (stackft])
%@ s: stackft]
%@ result() :— s()

push = proc (s: stackft], e: t) -
%@ top(s) :— ()
%@ rest(s) :— rest(s), top(s)
%@ size(s) «— size(s)

pop = proc (s: stackft]) returns (t)
%@ result() :— top(s)
%@ top(s), rest(s) :— rest(s)
%@ size(s) — size(s)

top = proc (s: stack[t]) returns (t)
%@ result() :— top(s)

size = proc (s: stack[t]) returns (int)
%@ result — size(s)

Figure 3.7: Specification of a stack

66 CHAPTER 3. REFERENCE ASPECTS

switch = proc (w: window, s: stack[buf])
%@ upper(w) :— top(s), upper(w)
%@ top(s) :~— upper(w), top(s)
if stack[buf]8size (s) = 0
then return
else
u: buf := window$get_upper (w)
t: buf := stack[buf]8pop (s)
stack[buf]8push (s, u)
windowSset_upper (w, t)
end
end switch

Figure 3.8: A procedure that uses a stack

the first assertion. The second assertion is short for two elementary binding
assertions:

top(s) :— rest(s)
rest(s) :— rest(s)

The first says that the top element after a pop was one of the elements below
the top before®; the second says that the elements that are below the top
after include those that were below the top before. The indeterminacy arises
because the collection aspects denote sets and not sequences. The order of
the e'ements below the top of the stack is not expressible in Aspect—unable
to say that top(s) becomes the first element in rest(s), we are left saying that
it becomes one of the elements of rest(s).

The top operation is like pop, but it leaves the stack invariant (evident
from the omission of any assertion with a stack aspect on the left-hand side)
and returns the top element. Finally, the size operation returns an integer
that depends on the size of the stack.

The switch procedure (Figure 3.8) takes a window and a stack of buffers,
and switches the top buffer of the stack with the upper buffer of the win-

6This is slightly simplified. The specification assumes that pop is not called on an
empty stack, in which case top(s) :— top(s) would be needed as well.

3.7. POLYMORPHISM 67

dow. Its specification, like that of push, gives several possibilities. The first
assertion, for exarr ple, says that the upper buffer after is either what was
the upper buffer before (if the stack is empty), or what was the top buffer of
the stack.

All the given possibilities must occur in the code. In the same way that
the checker lists missing dependencies, it will list any missing bindings. For
example, if we forgot to handle the case of the empty stack (omitting the
‘if’ and leaving only the code following the ‘else’), there would be no path in
which, after the execution, top(s) has the value it had before, and an error
message would be generated. Another bug would be to swap the push and
pop statements, giving

Missing: upper(w) :— top(s).

3.7 Polymorphism

The stack specification did not specify the type of the element objects. In-
stead, the aspect declarations use t as the type of the object that top and
rest point to. This is not a type but a parameter of the stack cluster. The
cluster can be instantiated with any type for ¢, so that the same code (and
specification) can be used polymorphically for a stack of integers or a stack
of buffers.

In CLU, polymorphic types can only be instantiated at compile-time, so
the Aspect specification can be viewed as a template in which ¢ is replaced
by the appropriate type. The checker constructs the object structure for
stack[buf] from the aspect declarations of the two clusters, stack and buf.

The procedure specifications of stack need no special treatment, since the
meaning of a binding assertion is unaffected by the type of the reference
aspects it relates. Furthermore, there are no assertions about aspects of the
element type’.

3.8 Allocation Assertions

Binding assertions describe changes in the shape of the program state due to
rearrangements of the objects. Some procedures change the state not only by

"This is a limitation of Aspect discussed in Section 8.3.

68 CHAPTER 3. REFERENCE ASPECTS

copy-to_upper = proc (w: window, b: buf)
%@ b2: buf
%@ text(b2) — text(b)
%@ upper(w) :— b2()

Figure 3.9: Assigning dependences to allocated objects

rearranging the existing objects, but also by allocating fresh objects which
are then bound to existing objects or returned as results.

The stack$new operation (Figure 3.7) has an allocation assertion to say
that a new stack object is allocated and a binding to associate it with the
result variable:

s: stackft]; result() :— s()

The assertion z: t declares z to be a freshly allocated object of type t. The
name z is local to the scope of the specification and must not be the name
of an argument of the procedure.

The copy-to_upper procedure (Figure 3.9) shows how an allocated object
may become part of an argument object®. It replaces the upper buffer of the
window w with a new buffer object. The aspects of the allocated object may
be given dependences; the tezt of the new buffer comes from the buffer 5.

3.9 Immutable Objects

An object in CLU is either mutable, which means that it can change over
its lifetime, or immutable, which means that once created its value is set
forever. Assignment of immutables still introduces sharing, but the effect is
not visible »ince no mutations of the shared object are possible. So aliasing
is never a problem:.

Buffers are mutable, because they have operations like buf$cut_region(b).
Integers are immutable: there are no operations that change their value. The
statement

81t may not be bound to an argument variable because CLU semantics prevents a
procedure call from mutating the environment, except in assigning the result.

3.10. SUMMARY 69

z=z+4+ 1

does not mutate z, but makes z a name for the new integer object whose
value is one greater than the old integer object named z. But whether this
happens or the value of z is increased by one is a question of viewpoint, since
the distinction is not observable.

Aspect, like CLU, gives assignment the same semantics for mutable and
immutable objects. The integer add operation allocates a fresh integer object:

add = proc (i, j: int) returns (int)
%@ k: int
%@k —1,j
%@ result() :— k()

This is a frequent idiom, so it can be abbreviated to

add = proc (1, j: int) returns (int)
%@ result — 1, j

We have already seen several examples of this, such as getMark (Figure 2.1).

3.10 Summary

We started with a naming scheme for structuring the program state. The
notion of an aspect as a property of an object extends naturally to references
within that object to other objects. Two kinds of reference aspect were
introduced: pointer aspects, for references to single objects, and collection
aspects for references to sets of objects. Like plain aspects, the reference
aspects of a type are chosen by the programmer. For a stack, we chose to
represent the elements with two aspects, a pointer aspect for the top element
and a collection aspect for the rest.

Aliasing foils the dependency calculation of Chapter 2 because it gives
an invisible route for side-effect dependencies. To account for this, we added
binding assertions to give the values of reference aspects and we modified the
dependency calculation by representing possible references between objects
as the edges of a graph.

Dynamic allocation called for a third kind of assertion. The functional
parts of CLU can be handled in the same framework as before by viewing
immutable objects as allocated on the heap.

70

CHAPTER 3. REFERENCE ASPECTS

Chapter 4

Refinements

Chapter 2 explained dependency assertions and plain aspects. Then Chap-
ter 3 introduced reference aspects to name objects that are not immedi-
ately associated with variables, and showed how binding assertions describe
changes in the shape of the store: how objects are connected and, in partic-
ular, when two names refer to the same object.

This chapter brings these ideas together. The notion of references forces
us to revisit dependency assertions and say more precisely what they mean.
The happy outcome of this complication is more expressive power. We shall
see that the checker can catch some bugs that could not be explained before
and also how the checker can give more informative messages by distinguish-
ing the multiple claims of a single assertion.

4.1 Reference Dependencies

So far we have seen that plain aspects have dependencies and reference as-
pects have values. We needed the values of reference aspects to determine
possible aliasings, and thus account for extra dependencies that creep in
through side-effects. This is a pragmatic distinction; plain aspects could be
given values too! but they are not essential.

The question that arises is: do reference aspects have dependencies as
well as values? The answer is yes; not only do they, but they must. In fact,
dependencies on reference aspects are implicit in most of the assertions we
have already looked at.

1Gee Section 8.6.

71

72 CHAPTER 4. REFINEMENTS

Our starting point is the dependency assertion

a(p) « b(q)

Up until now, we have read the arrow as “depends on”. This will no longer do.
In the next section, we shall see that this assertion implies other dependencies
and some new vocabulary is therefore needed. So we shall henceforth read
«— as “affected by”, and “a(p) is affected by b(q)” will mean that:

1. the aspect b of the object @ is read;
2. the aspect a, of the object P is written; and

3. the post-state value of the a aspect of P depends on the pre-state value
of the b aspect of Q; where

4. P is the object named by p in the pre-state, and

5. @ is the object named by ¢ in the pre-state.

There are two new points here. First, all object names in aspect expressions
name objects in the pre-state. Second, there are extra implicit reference
dependencies:

e because of (1), a(p) depends on the reference aspects that made q
name Q—that is, if ¢ is y. f1. f2.. fa, then a(p) depends on f,.(y. f1..fa-1),
Ja-1(y-fi--fa2), as far as y(); and

® because of (2), a(p) depends on the reference aspects that made p
name P—that is, if p is z.ey.e;..eq, then a(p) depends on e, (z.€;..€,_1),
en—1(z.€1..€0_2), as far as z().

There is an implicit dependency assertion in every binding too. A binding
assertion a:— § means that a (after) is made equal to 8 (before), so it must
also be affected by 8. Thus a :— 8 includes ae 8 implicitly?.

The next few sections explain why assertions have these interpretations.
We shall start with the notion of reference dependencies and see why the im-
plicit claims are natural. Then we shall look at how Aspect binding assertions
define a set of possibilities; how objects are named always in the pre-state;
and finally, how implicit dependencies allow more bugs to be caught.

2Unless & = (3 and there are no other binding assertions, in which case a is invariant
and no dependency assertion is implied.

4.2. RATIONALE FOR REFERENCE DEPENDENCIES 73

replace = proc (w: window, b: buf, cmd: string)
%@ upper(w) :— b(), upper(w)
%@ lower(w) :— b(), lower(w)
%@ lower(w), upper(w) — cmd
if cmd = ’'upper’ then
window$setUpper (w, b)
elseif cmd = ’lower’ then
window$setLower (w, b)
end
end replace

Figure 4.1: Illustration of pointer dependencies

4.2 Rationale for Reference Dependencies

Suppose we have a procedure replace (Figure 4.1) that takes a window w, a
buffer b and a command c¢md, and replaces the upper or lower buffer of w
with b, according to whether cmd is ‘upper’ or ‘lower’.

The initial value of the string c¢md clearly affects the final state of the
procedure. But where should the dependence on cmd be recorded? We
certainly do not want to say that an aspect of either of the buffer objects
is made to depend on cmd, for we know the buffers to be invariant. The
change is to the window object: cmd determines the final values of the upper
and lower pointers of w. Therefore it is the pointer aspects upper(w) and
lower(w) which must have a dependence on cmd. These dependences may
be specified, just like the dependences of plain aspects.

Reference aspect dependencies have more subtle repercussions than reg-
ular dependencies. Suppose we are constructing dependencies for:

replace (w, rb, cmd)
b: buf := windowSget_upper (w)
c: int := buf$get_cursor (b)

The final value of ¢ depends on the initial value of cmd, because, if cmd
is different, ¢ will be the cursor of a different buffer. This dependency is

74

CHAPTER 4. REFINEMENTS

accounted for by implicit and explicit dependencies in the specifications of
the operations. Here is how it arises, viewed from the first statement down:

e The assertion of replace

upper(w) — cmd
gives an explicit dependence of upper(w) on cmd—nothing strange here.

The assertion of get_upper

get_upper = proc (w: window) returns (buf)
%@ result() :— upper(w)

implies a dependence of result() on upper(w), since if result() acquires
the value of upper(w), it must surely depend on it. The variable b is
bound to the result of get_upper, and so we now have a dependence of

b() on cmd.

The assertion of get_cursor

get_cursor = proc (b: buf) returns (int)
%@ result «— cursor(b)

implies a dependence of result on b(). The outcome of reading the
cursor aspect of b must depend on which object bis. To put it another
way, reading cursor(b) involves reading b() first. Since cis bound to the
result of get_cursor, this gives the dependence of c on b(), and hence
on cmd.

The implicit dependency in get_cursor was due to the reading of cursor(b).

An analogous dependency arises when an aspect of an object is written.
Suppose that, instead of obtaining the cursor in the above code fragment, we
modify it:

replace (w, b, cmd)
b: buf := windowSget_upper (w)
buf3set_cursor (b, 1)

4.3, ASSERTIONS AS POSSIBILITIES 75

Consider the final value of the cursor(w.upper). By a similar argument, it
must depend on cmd, because whether the call to set_cursor affects it depends
on whether w.upper and b are aliased. This time, the dependency is due to
set_cursor’s assertion

set_cursor = proc (b: buf, c: int)

%@ cursor(b) — c

which implies a dependence of cursor(b) on b(), which as before depends on
c¢md. This implicit dependency is more subtle. It arises because cursor(b)
denotes the dependencies of the cursor of the object called b, not of the
variable b. From the viewpoint of the object called w.upper, its cursor is
modified only when the value of b() is its identity.

Collection aspects imply dependencies in exactly the same way as pointer
aspects. Given a stack of buffers s (Figure 3.7), a procedure that returns the
total size of all the text in all the buffers would have the assertion

result « tezt(s.top), text(s.rest)

Recall that rest is a collection aspect and top is a pointer aspect, so that
s.top denotes the buffer at the top of the stack and s.rest denotes a buffer
below the top. This assertion implies that result depends on top(s), rest(s)
and s(): which buffer is the top of the stack (a pointer dependency), which
buffers are in the rest of the stack (a collection dependency) and which stack
s is bound to.

4.3 Assertions As Possibilities

In general, an Aspect assertion defines a possibility, and a specification de-
fines a set of possibilities. The specification of replace (Figure 4.1) illustrates
this. It gives two possible values for upper(w) and lower(w):

upper(w) :— b(), upper(w)
lower(w) :— b(), lower(w)

The possibilities of upper(w) and lower(w) are independent. They are not
correlated in any way, so the specification does not express the notion that
only one, or even at least one, of upper(w) or lower(w) is set to b() during a
single execution.

76 CHAPTER 4. REFINEMENTS

4.4 Prenaming of Objects

A final point about the meaning of an Aspect procedure specification con-
cerns the relationship between binding and dependency assertions. By always
interpreting object names in the pre-state, we can ensure that assertions
retain their declarative meaning and do not interact with one another in
peculiar ways.

The replaceReset procedure is like replace, but as well as replacing the
upper or lower buffer of w with b, it resets the cursor in the replaced buffer
to its top:

replaceReset = proc (w: window, b: buffer, cmd: string)
%@ upper(w) :— b(), upper(w)
%@ lower(w) :— b(), lower(w)
%@ lower(w), upper(w) « cmd
%@ cursor(w.upper), cursor(w.lower) «— cmd

Which buffer is meant by w.upper in the last assertion? After the execution
of the procedure, w.upper might name a different buffer (the one initiaily
called b). To resolve this dilemma, names of objects are always interpreted
in the pre-state, wherever they occur in an Aspect specification. So w.upper
and w.lower both refer to the old buffers of w, and the buffer called b in the
pre-state is not affected. If instead we wanted to specify the resetting of the
cursor of the replacing buffer, we would replace w.upper by b in the last line.

The reason for choosing to name objects in the pre-state rather than the
post-state is that some objects may no longer have names in the post-state.
The replaced buffer in this example is only accessible to variables in the
calling context that were already aliased to it; by definition the ‘replaced’
buffer is the one no longer reachable by any argument of replaceReset.

This rule simplifies complicated restructurings of objects and ensures that
the order in which we write the binding assertions does not matter. Suppose
we declare the record types

pair = record [one, two: int|
ppair = record [one, two: pair]

and then write the specification:

4.5. CATCHING EXTRA BUGS 77

tricky = proc (p: ppair)
%@ one(p) :— two(p)
%@ two(p) :— one(p)
%@ one(p.one) :— two(p.one)
%@ two(p.one) :— one(p.one)

This has the simple effect of swapping the objects of the pair originally called
p.one, and also swapping the objects of the pair (of pairs) p. The name p.one
on the left-hand side of the third assertion refers to the object called p.one
initially, and not the object called p.one after the effect of the second assertion
has been taken into account.

It is tempting to read the assertion

one(p.one) :— two(p.one)

as a claim that the object called p.one.one afterwards was called p.one.two
before. But this is not true, since p.one names a different object in the pre-
and post-states.

4.5 Catching Extra Bugs

Implicit dependencies allow more bugs to be caught because they strengthen
the specification. Our refined interpretation of dependency assertions re-
quires that an object be read and another written. Previously, if an object
was to be written with some constant value, we could not detect any errors
because the object would have no required dependencies. Now, however, we
can see how the requirement that the object be written can be checked, using
dependencies on reference aspects.

Consider an implementation of reset_cursor (Figure 2.1), a procedure that
resets a buffer’s cursor to the top:

reset_cursor = proc (b: buf)
%@ cursor(b) — @
buf3set_cursor (b, 0)

end reset_cursor

Recall that § denotes the empty list, so that the assertion says that the final
value of the cursor is affected by no aspects of b. It does, however, imply a

78 CHAPTER 4. REFINEMENTS

exchange = proc (b: buf)
%@ mark(b) «— cursor(b)
%@ cursor(b) — mark(b)
c: int := bufSget_cursor (b)
buf$set_mark (b, c)
m: int := bufSget_mark (b)
bufset.cursor (b, m)
end exchange

Figure 4.2: First example, revisited

dependence of cursor(b) on b(). Without the extra dependency, SKIP would
satisfy the specification; with it, the buffer variable b must be dereferenced
and a change made to that object.

Let us return, for a moment, to our very first example of a bug (Figure 4.2)
taken from the start of Chapter 2, The reader may have wondered why the
checker displayed the message

Missing: cursor(b) on mark(b)
when the assertion cursor(b) — mark(b) was not satisfied, instead of just
Missing: cursor(b) «— mark(b)

The reason should now be clear. Even a simple dependency assertion im-
plies several aspect dependencies. The checker determines which of these are
missing and can give a more helpful message by listing them explicitly rather
than giving only the violated assertion. If, in addition to the error of failing
to save the initial value of the mark, we also omitted the set_cursor call, the
checker would display a second message:

Missing: cursor(b) on b().

Finally, note how the implicit claims of the dependency assertion contrast
with the weak claims of an invariance implied by the omission of an assertion.
If we write a « «, then the aspect expression a must be both read and
written. It differs from omitting an assertion for «a in two ways:

4.6. SUMMARY 79

1. It claims that a may change, so if the procedure is called within an
if-statement, a control dependence of & on the conditional is added.

2. It claims that « depends on the reference aspect expressions that de-
termine the identity of the object associated with a.

As a result, the empty specification (claiming that all aspects are invariant)
is satisfied by the empty implementation, SKIP. But no other Aspect spec-
ification passes SKIP, because an explicit Aspect assertion implies at least
the writing of some object.

4.6 Summary

The chapter started with the notion of reference aspect dependencies. We
saw why they are necessary and how they were implicit in the assertions we
wrote in previous chapters. These extra dependencies strengthen the claims
of a dependency assertion, and as a result, more bugs can be caught.

An Aspect assertion defines a set of possibilities. In marked contrast to
conventional specifications, which say that some executions cannot happen,
an Aspect specification says that some executions must happen. Aspect is
thus good at detecting errors of omission. SKIP, the program that does
nothing, satisfies only one Aspect specification: the empty one.

Now we have described the meanings of all three kinds of assertion:

e The dependency assertion a + means that, in some execution, the
final value of a depends on the initial value of 8, and, moreover, that
B is read and « is written;

e The binding assertion a :— § means that each of the initial values of 3
is a final value of a in some execution;

e The allocation assertion z: ¢t means that in some execution, the proce-
dure allocates a fresh object of type t that is given the name z in the
local scope of the specification; and

Aspect is a declarative language. The order in which the assertions are
written is immaterial, and the meaning of an aspect expression in one as-
sertion is not affected by any other assertion. We showed that bindings and
dependencies in particular do not interact. Changes in the naming of objects
cause no problem because all objects are named in the pre-state.

CHAPTER 4. REFINEMENTS

Chapter 5

Abstraction Functions

A procedure specification plays two roles in Aspect. For checking the pro-
cedure’s implementation, it ac's as a criterion of correctness; for checking
procedures that call it, it acts as a summary of expected behaviour.

A problem arises for abstract operations—the procedures of an abstract
type, implemented in a cluster. These procedures are specified in terms of
abstract aspects invented for the purpose of specifying the type. Yet they are
coded in terms of a representation type, hidden from the outside, with its own
set of aspects. How can we check an implementation against a specification
written in a different vocabulary?

To bridge the gap, the programmer supplies an abstraction function that
tells the checker how the abstract aspects are related to the representation
aspects. The checker translates the criteria of the abstract specification into
claims about the aspects of the representation. The translation is invisible
to the user, who gives only the abstract specifications and the abstraction
function. When an abstract assertion is violated, an error message is given
in terms of the representation, where the deficiency lies.

The chapter starts by illustrating the idea of abstraction functions with
a trivial example. We shall see that an abstract assertion implies an inde-
terminacy from the representation viewpoint that cannot be easily expressed
with the existing notation, so a new assertion is introduced solely for the
purpose of translation. After considering a variety of examples of abstrac-
tion functions, we shall see the general translation rule. The ideas are then
applied to the buffer example of Chapter 2, and we see how some bugs can
be detected in an implementation of a buffer operation specified there. Up
until this point, the chapter deals only with dependency assertions. It ends

81

82 CHAPTER 5. ABSTRACTION FUNCTIONS

with a short discussion of binding assertions.

Throughout the chapter, we are only concerned with the checking of an
abstract operation’s implementation. From the client’s viewpoint, the ab-
straction function is irrelevant and only the abstract procedure specifications
are needed.

5.1 Simple Examples

Consider an absiract type poly that models polynomials. Suppose we imple-
ment the polynomial as an array of coefficient/exponent pairs!:

rep = array [term]
term = record [coeff, exp: int]

Then we could represent the polynomial z + 3z2 + 5z*, for example, as
r:[1,1},2:03,2],3:[5,4]]

The numbers preceding the colons are the indices of the array; this array is
indexed from 1. Another valid representation of the same polynomial would
be

[2:[1,1],3: [5,4],4 : [3,2]

with the array indexed from 2 and the terms in a different order.

Consider an implementation of poly represented in this way (Figure 5.1).
The implementations of two operations are shown: get_degree, which returns
the largest exponent, and add_term, which adds a new term to the polyno-
mial. The keyword cvt indicates an argument of the abstract type that will
be viewed, inside the operation, in terms of its representation. So inside the
operations, the type of p is not poly but arrayfterm)].

Only part of the specification is shown. The abstract type has some as-
pects that include degree; get_degree obtains degree(p) and add_term changes
it. The representation type, on the other hand, has no such aspect. Its
aspects, from the specifications of arrays, records and integers are

!The keyword rep is used in CLU to name the representation type of a cluster; there is
no need to say which type it represents because a cluster always implements exactly one
abstract type.

5.1. SIMPLE EXAMPLES 83

poly = cluster is get_degree, add_term, ...
%@ aspects degree, .

%@ abstraction
%@ degree(A) < R.el.exp
%@

rep = array [term]
term = record [coeff, ezp: int]

get_degree = proc (p: cut) returns (int)
%@ result «— degree (p)
t:nt
if arrayfterm/$¢mpty (p) then return (0)
else i := p[1].exp
end
for t: term in arrayfterm/$elements (p) do
if t.exp > i then i := t.exp
end
end
return (i)
end get_degree

add_term = proc (p: cvt, coeff, exp: int)
%@ degree(p) — degree(p), coeff, exp
%@ ...
if coeff ~= 0 then
repSaddh (p, term${ coeff: coeff, ezp: exp})
end

end add_term

Figure 5.1: Part of a polynomial implementation

84 CHAPTER 5. ABSTRACTION FUNCTIONS

size(p)— the size of the array,

low(p)— the low bound of the array,

el(p)— the elements of the array (a collection),
ind(p)— the order of the elements of the array,
ezp(p.el)— the exponents of the terms (a pointer),
coeff(p.el)— the coefficients of the terms (a pointer),
p.el.exp— the value aspect of an exponent, and
p.el.coeff— the value aspect of a coefficient.

How then can we check the implementation of an operation like get_degree?
We need to tell the checker what representation dependencies are implied
by a dependency on degree. The abstraction function following the aspect
declaration defines each abstract aspect by giving the representation aspects
from which it can be derived. The degree aspect is defined as:

degree(A) < R.el.exp

which says that the degree of an abstract polynomial A is derivable from the
value aspect of the representation object R.el.ezp. The checker translates
gét_degree’s assertion

result «— degree(p)
into
result — p.el.exp

which is satisfied by the implementation.
Checking the assertion of edd_term is not so straightforward. If we just
naively replace degree(p) by p.el.ezp we will obtain

p.el.exp «— p.el.exp, coeff, exp

which is certainly not satisfied, since it implies? a mutation of the immutable
integer object p.el.ezp! To handle this case, we have to be more careful about
the relationship between degree(p) and p.el.ezp.

2Recall from Chapter 4 that a(z) — ... implies mutation of the object named z in
the pre-state; the aspect a in this case is the anonymous value aspect of integers and the
object z is the integer object p.el exp.

5.2. THE NATURE OF ABSTRACT OBJECTS 85

5.2 The Nature of Abstract Objects

From the abstract viewpoint, a mutation of degree(p) has a simple meaning:
the degree aspect of the object called p in the pre-state is modified. But from
the representation viewpoint, there are two immediate problems. First, what
object corresponds in the representation to p? Second, what corresponds to
the degree aspect of that object?

1. The abstract object p does not correspond to any single object in the
representation, but the whole structure of the array, its terms and
the integer coefficients and exponents. We can imagine a shell drawn
around these objects (Figure 5.2). From outside the cluster, the shell
is opaque and a change to p might involve a change to any of these
objects. A CLU procedure cannot change the binding of an argument
to an object, so p will be bound to the same array object in the pre- and
post-states. Moreover, a term added to the polynomial as a new record
appended to the array will appear in the post-state to be part of p,
even though it never existed in the pre-state. A dependency assertion
therefore names representation objects in the post-state. This is not
reneging on the notion of prenaming; these objects become part of the
abstract object named in the pre-state.

2. Now consider the notion of the degree aspect of p. The abstraction
function says that degree(p) is obtainabie from p.el.ezp. That means
that degree(p) may be changed by altering any aspect of the represen-
tation that affects the result of reading p.el.ezp. We could achieve this
by adding a new term, changing the exponent of an existing term, or
mutating the object p.el.ezp itself (were it not immutable). The change
can thus be at any level of the structure, since the abstract aspect is
not associated with a single object of the representation.

There is a freedom here that is missing in standard procedure specifica-
tions. Usually, we have to specify exactly which object is mutated, since the
calling context can determine (by aliasing) where the change is made to a
structure. In the abstract case, however, there are no pointers® that cross
the shell and the calling context cannot tell which object changes.

3This is an assumption; it is violated by rep ezposure.

size

exp

coeff

@

exp

coeft

CHAPTER 5. ABSTRACTION FUNCTIONS

Figure 5.2: An abstract polynomial

5.3. MORE COMPLEX ABSTRACTION FUNCTIONS 87

It is therefore appropriate to introduce a new kind of dependency asser-
tion, used only in the translation and not available for explicit use. Let

a(p) — b(q)

mean that the a aspect of the object called p in the post-state, or any of its
reference dependencies, depends on b(g). Now we can translate the assertion
of add_term into

p.el.exp — p.el.ezp, coeff, exp

The way it is satisfied by the implementation demonstrates both of the issues
discussed above:

1. Prenaming of the abstract object implies post-naming of the represen-
tation object: the dependence on ezp comes from an exponent object
that is present only in the post-state and becomes part of the polyno-
mial by the addition of a term.

2. An abstract aspect can be changed by modifying any of the represen-
tation objects on the path: the dependence on coeff is associated with
the pointer aspect el(p) since coeff determines whether a term is added
at all.

The dependence on p.el.ezp simply arises from the existing exponent objects.

5.3 More Complex Abstraction Functions
If get_degree is called ‘requently, the representation we have chosen is ineffi-
cient. To improve the performance, we could replace it by:

rep = record[terms: array [term], deg: int]
term = record [coeff, ezp: int]

in which the redundant deg field provides the degree of the polynomial with-
out calling an array operation. The new abstraction function would have:

degree(A) < R.terms.el.ezp | R.deg

This says that the degree is derivable from either the exponents or the deg
field. Now the assertion result «— degree(p) in the specification of get_degree
is translated into

88 CHAPTER 5. ABSTRACTION FUNCTIONS

(result — p.deg) V (result — p.terms.el.exp)

The disjunction operator V is, like — , part of the extended notation used
only in translation. This compound assertion is satisfied if either disjunct is
satisfied. The trivial implementation

return (p.deg)

satisfies the first, for example, and a clumsy version that still searches through
the terms satisfies the second.

This new abstraction function will affect the checking of add_term in a
different way. A requirement to change the dependences of degree(p) will
now imply, in the representation, changes to both p.terms.el.ezp and p.deg,
ensuring that the redundancy in the representation is maintained:

(p.deg — p.deg) V (p.deg — p.terms.el.ezp)
(p.terms.el.exp — p.deg) V (p.terms.el.exp — p.terms.el.ezp)

The abstraction function thus incorporates some properties of what is
usually called the rep invariant: a predicate on objects of the type that
determines which of them correspond to valid abstract objects. The invariant
here is that p.deg is equal to the largest ezp field of the elements of p.terms.
Although it cannot be expressed fully in Aspect, the fact that these are
related is captured by the disjunction in the definition of degree.

Finally, suppose that we allow terms with zero coefficients, so that the
polynomial z + 3z% + 5z* can be represented also as

1:01,1],2:(3,2],3:[5,4],4:[0,9]]

The degree aspect is now derivable from the combination of the coefficients
and the exponents:

degree(A) < R.terms.el.exp, R.terms.el.coeff

In general, the assertion degree(p) «— ... can now be satisfied with a change
to either p.terms.el.exp or p.terms.el.coeff. As a final complication, if we
allowed zero coefficients for the optimized representation we would have

degree(A) < (R.terms.el.exp, R.terms.el.coeff) | R.deg

which says that degree is derivable either from the redundant degree field or
from the combination of coefficients and exponents.

5.4. RULES FOR TRANSLATING ABSTRACT ASSERTIONS 89

5.4 Rules for Translating Abstract Assertions

The translation rule is simple to generalize. Suppose we have abstract aspects
a and b defined in the abstraction function as

a(A) € X1 | Xz | .. | Xa
b(A) <Y1 | Yal...| Yn

where the X; and Y; are lists of representation aspect expressions. If Xj;
is the jth aspect expression in X;, let X;;(p) denote the aspect expression
obtained by replacing the R in X;; by p. Also, let B = U;Y..

Then the abstract dependency assertion

a(p) — b(q)

is translated into
Vi. Yy € B. 3X,‘j € X;. X,'j(p) — }/kl(q)

If either of a or ¢ is not an abstract aspect of the type of the operation being
checked, the rule degenerates in the expected way. If a is not abstract, it can
be viewed as having the definition

a(A) < a(R)

which gives

3Yu € B. a(p) — Yu(q)

and, similarly, if b is not abstract, the translated assertion becomes

Vi. 3.X;; € Xi. Xii(p) — b(q)

5.5 Buffers and Arrays

As a more realistic example of abstraction functions, we can apply these ideas
to the buffer of Chapter 2. Since we shall represent the buffer with an array,
we start by looking at the array specification (Figure 5.3).

Arrays have four aspects. Three are plain: ind, which represents the
indexing of the array (the order of the elements), size, the number of elements

90 CHAPTER 5. ABSTRACTION FUNCTIONS

array = cluster [t: type] is new, addh, store, fetch, high, trim, ...
%@ aspects

%@ *rel: t, % refs to the set of elements
%@ ind, % the tadezing of the elements
%@ size, % the number of elements

%@ low % the low bound

new = proc () returns (arrayft])
%@ a: array[t]
%@ result() :— a()

addh = proc (a: arrayft], e: t)
%Q el(a) :— el(a), ()
%@ ind(a) «— ind(a), low(a), size(a)
%@ size(a) — size(a)

store = proc (a: arrayft], e: t, i: int)
%@ el(a) :— el(a), €
%@ ind(a), el(a) — ind(a), low(a), i

fetch = proc (a: arrayft], i: int) returns (t)
%@ result() :— el(a)
%@ result () «— ind(a), low(a), i

high = proc (a: arrayft]) returns (int)
%@ result — low(a), size(a)

trim = proc (a: array[t], from, ct: int)
%@ el(a) :— el(a)
%@ ind(a), el(a) — ind(a), low(a), from, ct
%@ size(a) — size(a), low(a), from, ct

%@ low(a) « from

Figure 5.3: A specification of arrays

5.5. BUFFERS AND ARRAYS 91

buf = cluster is new, setCursor, ..
%@ aspects text, clip, cursor, mark

%@ abstraction

%@ text(A) < R.chars.el, ind(R.chars)

%@ clip(A) < R.cut.el, ind(R.cut)

%@ cursor(A) < R.csr| (R.csrX, R.csrY, R.chars.el, ind(R.chars))
%@ mark(A) € R.mk| (R.mkX, R.mkY, R.chars.el, ind(R.chars))

rep = record [chars: ac,
csr, csrX, csrY: int,
mk, mkX, mkY: int,
cut: acf

ac = array [char]

Figure 5.4: Part of the annotated buffer code

and low, the low bound. The other aspect, el, is a collection representing a
set of references to the element objects.

Only the operations used in the examples to follow are given: new, which
returns a fresh array, addh, which appends an element at the high end, high,
which returns the index of the top element, store, which replaces an element
at a given index, fetch, which returns an element at an index, and ¢rim, which
resets the low bound to its from argument and removes the elements with
indices below from or above from + ct — 1.

Figure 5.4 shows the part of the annotated buf cluster that contains the
definition of its representation type. The text of the buffer (chars) is repre-
sented as an array of characters, and a similar array (cut) holds the contents
of the clipboard. The cursor and mark are represented both as single integers
and as coordinate pairs.

The abstraction function defines this relationship more precisely. The text
of the buffer is derived from the characters in the chars array (R.chars.el)
along with their order in the array (ind(R.chars)) . The clipboard is derived
in the same way from the cut array. The cursor aspect, measured as the

92 CHAPTER 5. ABSTRACTION FUNCTIONS

number of characters from the start of the buffer, can be derived directly
from the value of the integer csr field. Alternatively, it can be derived from
a combination of the csrX and csrY fields, along with the same aspects that
gave the text (so that the effect of newline characters can be accounted for).
The mark is derived similarly.

Figure 5.5 shows the annotated code for cut_region, an operation we speci-
fied in Chapter 2 that deletes the characters between the cursor and the mark
of b and copies them into its clipboard. Arrays are assumed throughout to
be indexed from 1. The array operations store and fetch appear in the code
in short form:

tztfi] = c stands for ac$fetch(tzt, i) = ¢, and
tztfi] := e stands for ac$store (tzt, i, €).

Rather than seeing how cut_region meets its specification, let us consider
some bugs that could be caught. Most gross omissions would be detected.
For example, forgetting to copy text to the clipboard, by omitting the addh
operations in lines 20 and 29, would violate the assertion

clip(b) «— text(d)

The checker does not display the abstract assertion in its error message.
Instead, it displays

Missing: b.cut.el, ind(b.cut) on b.chars.el, ind(b.chars)

giving a selection of representation dependencies as the cross product of two
lists. A dependence of any aspect expression from the left list on any aspect
expression from the right list will discharge the abstract assertion. Several
small slips would have the same effect: omitting line 33, reversing frt and cut
in the addh calls, etc.

Another gross omission would be to assume that the mark always precedes
the cursor and leave out lines 8 to 13. This would violate the assertion

cursor(b) — mark(b)
and the checker would display

Missing: b.csr on b.mk, b.mkX, b.mkY, b.chars.el, ind(b.chars)
Missing: b.csrX, b.cstY on b.mk, b.mkX, b.mkY, b.chars.el, ind(b.chars)

5.5. BUFFERS AND ARRAYS

cut_region = proc (b: cut)
%@ mark(b), cursor(b) « mark(b), cursor(d)
%@ clip(b), text(b) — tect(b), mark(b), cursor(b)
m: int := b.mk
c: int := b.csr
if ¢ = m then return
elseif ¢ < m then
b.mk =C
b.mkX := b.csrX
b.mkY := b.csrY
else
b.csr :=m
b.csrX := b.mkX
b.csrY := b.mkY
m,c:=c,m
end
tzt: ac := b.chars
cut: ac := aclnew ()
disp: int :=m — ¢
last: int := acShigh (tzt) — disp + 1
it = ¢
while ¢ < last & i < ¢ do
ac$addh (cut, tztfi])
tztfi] := tatfi + disp]
t:=i1+ 1
end
while i < last do
tztfi] := txtfi + disp]
i:=t+ 1
end
while i < ¢ do
ac$addh (cut, tztfi])
t=14+ 1
end
ac$trim (tzt, 1, last — 1)
b.cut := cut
end cut.region

Figure 5.5: The implementation of a buffer operation

93

O W 2 G W~

94 CHAPTER 5. ABSTRACTION FUNCTIONS

Two inessages are produced becase of the invariant implied by the disjunc-
tion in the definition of cursor. To correct the implementation, a dependency
must be introduced for each of the two messages. If we set b.csr in line 9 but
forgot to set b.csrX and b.csrY, we would get

Missing: b.csrX, b.csrY on b.mk, b.mkX, b.mkY, b.chars.el, ind(b.chars)

since changing cursor(b) involves changing more than one aspect of the rep-
resentation.

A variety of bugs in quite complex code can thus be detected with a
small procedure specification, because the abstraction functien factors out
the complexities of the representation. If the representation of bufis modified,
only the abstraction function need be altered—-all the operation specifications
stay the same.

The abstraction function mitigates some other problems too. In its ab-
sence, we would have to write specifications in terms of the representation.
These would be much longer than the abstract specifications. In the worst
case, the number of assertions is the square of the number of aspect expres-
sions. In this example, there are 24 aspect expressions that can be fermed for
a representation object, compared to 4 for the abstract object, so a concrete
specification could be 36 times as long!

A concrete specification is also likely to be biased, making distinctions be-
tween implementations that are not observable. For example, we might assert
that b.csrY depend on b.mkY. This precludes obtaining b.csrY by counting
newline characters in b.chars as far as b.mk, which, despite its inefficiency
would have the identical behaviour. The abstraction function provides the
disjunction that is not available in proccdure specifications.

The disadvantage of checking against the abstract specification is a loss
of precision. Errors involving confusions of b.cstX and b.csrY, for example,
could be detected if separate assertions were written instead of a single as-
sertion for cursor(b). Also, by specifying dependences of the sizes of the
character arrays, we could catch errors 'ike the omission of the trim call in
line 32.

5.6 Abstract Binding Assertions

So far, we have only considered plain aspects. How are reference aspects
of an abstract type treated? The stack of Figure 3.7, for example, has two

5.6. ABSTRACT BINDING ASSERTIONS 95

stack = cluster [t: type] is new, push, pop, top, size

%@ aspects

%@ size, % number of elements in stack
%@ *top: t, % the top element
%@ **rest: t % the remaining elements

%@ abstraction

%@ size(A) < size(R)
%@ top(A) < el(R)
%@ rest(A) < el(R)

rep = arrayft]

push = proc (s: cvt, e: t)
%@ top(s) :— e()
%@ rest(s) :— rest(s), top(s)
%@ size(s) — size(s)
arrayft/$addh (s, e)
end push

Figure 5.6: Stack representation

reference aspects: a pointer top and a collection rest.

Each abstract reference aspect must be mapped by the abstraction func-
tion to exactly one reference aspect of the representation. An example of an
abstraction function for an array representation of stacks is shown in Fig-
ure 5.6. The binding assertions are translated directly into assertions over
the representation aspects, so push’s specification would be translated into

el(s) :=— e()
el(s) :— el(s)
which is discharged immediately by the addh specification.

The abstract specifications of the stack operations are unusual in being
more precise than concrete specifications would be. The stack aspects distin-

96 CHAPTER 5. ABSTRACTION FUNCTIONS

guish the high element of the array from the others; this distinction can be
maintained because the operations access the array in a disciplined fashion.
This is an example of the specifier adding information that the checker could
not have inferred itself, and as a result clients of the stack can be checked
with a finer grain than if the array were used directly.

When there are abstract reference aspects, the abstraction function must
obey a further constraint. The representation aspects they map to delineate
the boundary of the abstract object: they point to objects outside. Any
aspect expression that appears on the right-hand side of a definition in the
abstraction function, on the other hand, contributes to an abstract property
of the object. It is therefore essential that no aspect expression of an object
that lies beyond the boundary of the abstract object be part of the definition
of one of its aspects.

This phenomenon is called rep ezposure. It can also arise because an
abstract operation returns an object that is part of a representation object.
This case is worse, since it cannot be ruled out by a static analysis of the
abstraction function. However it arises, rep exposure is insidious because
it provides a route by which an implementation can introduce dependencies
that the checker cannot detect, leading to spurious bug reports.

5.7 Summary

The Aspect specification of a procedure has two purposes: the checking of
the procedure itself, and the checking of its clients. An abstract operation
is specified in terms of the aspects invented by the programmer for its type.
These aspects are chosen to give the best possible checking of clients without
over-complicating their specifications. But they cannot be used to check the
implementation of the operation directly, whose dependencies range over a
different set of aspects.

The programmer provides an abstraction function relating the abstract
and representation aspects. Then all the operations can be checked by con-
verting their specifications into claims about the representation. These claims
include invariants that must be maintained by all the operations but which
are specified only once. Changes to the representation force changes only to
the abstraction function, and never to the specifications of the operations.

Chapter 6

Formal Semantics

This chapter gives an operational semantics for Aspect. It adds nothing that
has not already been said informally, apart from some details left to intuition
up until now. Almost all the tricky points of the semantics were explained
in Chapter 4.

Since Aspect’s view of a CLU program is abstract and unconventional, the
aim of the semantics ‘- not only to explain what a particular specification
means, but to give the reader a firmer grasp of what kinds of thing can be
specified at all. A second purpose is to lay a foundation for the checker,
whose soundness rests on the relationship between its approximations and
the semantics described here.

The semantics is given in three stages. First is the Aspect state, an
abstract state over which Aspect specifications are defined. Second, the
meaning of a specification is given as a relation on Aspect states. Third, the
meaning of a CLU program is defined as an execution over Aspect states.

The specification semantics plays two roles. First, the state relation de-
fines the possible behaviours of a procedure with no code, so that a program
with calls to codeless procedures has a well-defined meaning. This absolves
us from giving a semantics for the built-in types, because their operations
are defined by specifications. Second, the state relation defines a notion of
satisfaction. By calculating all the possible executions of a procedure’s code,
one can determine whether its specification is met. How to perform this
calculation efficiently is discussed in Chapter 7.

97

98 CHAPTER 6. FORMAL SEMANTICS

6.1 The Representation of CLU Histories with Aspect States

An Aspect specification of a procedure is abstract; it does not distinguish
the procedure’s executions at the level of detail of a full conventional specifi-
cation. Since the plain aspects have no values, Aspect regards as equivalent
two states that differ only, for example, in the values of integer objects. It
is convenient to define the meaning of Aspect specifications in an abstract
domain in which these details are ignored.

The Aspect state is an abstraction of the CLU state. A single Aspect
state corresponds to multiple CLU states: all those that retain the same
basic structure but differ in the values of the plain aspects. Because Aspect
is about dependencies, though, we shall need to consider sets of executions
rather than individual states. In general, a pair of Aspect states corresponds
to a set of CLU executions whose starting states (and ending states) share
the same structure, and which have certain dependencies of the aspects of
the ending state on the aspects of the starting state. To retain the notion
of an Aspect state corresponding to a set of CLU states, we can regard the
actual CLU states as “instrumented” with dependencies, so that a given state
carries evidence of the history that preceded it.

Consider, for example, the statement
if b then afi] := € end.

We might consider the evaluation or abstract execution of this statement
from the Aspect state in which a has two elements, neither of which is the
same as e. There are three Aspect states that could result: one with the first
element of a replaced by e, one with the second replaced and one with neither
replaced. The semantics will regard the choice between these outcomes as
non-deterministic, since the values of b and ¢ are not represented in the initial
Aspect state. Now consider an evaluation from the Aspect state in which e is
already one of the elements. There will still be three resulting Aspect states;
two will share the same structure and will differ only in the dependencies of
el(a), the collection aspect of the array. The Aspect state thus distinguishes
two CLU executions that end in the same state, because they have different
dependencies.

6.2. THE DOMAIN EQUATIONS OF THE ASPECT STATE 99

State = Env x Store
Env
Store = Loc x Aspect — Val x PSource
Val Unknown + Loc + P Loc
Aspect = PlainAspect + Pointer + Collection.

Var — Loc x PSource

Figure 6.1: The domain equations of the Aspect state

6.2 The Domain Equations of the Aspect State

Like cLU, the Aspect state has an environment that binds locations to vari-
ables and a store that gives locations their values. The Aspect environment,
however, is a simple mapping from variables to locations, and not a stack.
This does not preclude the analysis of recursive procedures. A called proce-
dure is viewed, in the code of its client, purely in terms of its specification
which, being declarative, hides the internal details of the called procedure’s
code—including the stack frames it uses temporarily. The other distinctions
are most easily seen in the domain equations (Figure 6.1). The symbol P
means powerset, so PS denotes the set of all finite subsets of S.

A value is associated not with a location (which corresponds to an object
in the heap) but with a particular aspect! of a location. There are three
kinds of value

Val = Unknown + Loc + PLoc

associated with three kinds of aspect
Aspect = PlainAspect + Pointer + Collection.

The plain aspects of a location (such as the size of an array or the colour of a
window) have unknown values; the set Unknown contains the single element
‘?’. A pointer aspect represents a reference to a single object (like a field
of a record) and a collection represents a reference to a set of objects (like

1The aspect names are assumed to be global. This is a simplification; in practice, types
may share aspect names, so we can think of an aspect as tagged with the name of the type
to which it belongs.

100 CHAPTER 6. FORMAL SEMANTICS

the elements of an array). Note that the value of a collection of a location
is a set of locations, so Aspect cannot, for instance, discriminate the order
of elements in an array. To distinguish the plain aspects from the reference
aspects, we define

Ref = Pointer + Collection

The CLU environment maps variables to locations and not values. A CLU
variable is a reference to an object, not a name for a pidgeon-hole (as in Pascal
or Modula). Similarly, an object that contains other objects always refers
to them indirectly. A record object, for example, will have some location
with aspects corresponding to its fields. Each of these aspect/location pairs
will have a value that is a location, and that location will hold the contained
object.

The state is “instrumented” with dependencies. We shall see later, in
the seraantic definitions of assignment and the Aspect assertions, that the
sources of the environment record, against each variable, what determined
that it should point to that location. Similarly, the sources of the store
record against each aspect of each location what dctermined its value. A
source is essentially a marker that relates a component of the state to a
component of an earlier state, and thus represents a dependency. It might
seem odd to attach sources to individual states in this way, rather than
describing dependencies in terms of staté pairs. Nevertheless, it turns out to
be a convenient a~d straightforward representation. The source type Sourc:
is not defined; it can be any set of labels large enough to distinguish the
components of a state.

6.3 Aspect State Examples

To see how this formalizes the ideas we have discussed before, consider the
replace procedure from Chapter 4, repeated in Figure 6.2. The procedure
replaces the upper or lower buffer of the window w with the buffer b depending
on the value of cmd.

The uppermost tables of Figure 6.3 show an Aspect pre-state for this
procedure. It is like one of the graphs of Chapter 3 in tabular form. Note
that the plain aspects have no values; only the structure of the state is
constrained. The sources of the aspects are the initial tags described first

6.4. CONTEXT 101

replace = proc (w: window, b: buf, cmd: string)
if cmd = ’upper’ then
window$setUpper (w, b)
elseif cmd = lower’ then
window$setLower (w, b)
end
end replace

Figure 6.2: A procedure to demonstrate Aspect states

in Chapter 2; they are numbered from 1 to 18 to distinguish them from the
locations, which are numbered 100, 200, etc.

There are two possible Aspect post-states of replace. The lower table
shows the Aspect state that results from the executions in which the first
branch of the if-statement is taken. The value of upper(w) changes and it
acquires dependencies on (), emd() and cmd.

6.4 Context

Only some Aspect states are well-formed at an arbitrary point in a program.
These are determined by which variables are in scope, what their types are
and which aspects are associated with those types. Whether a state is well-
formed thus depends on its context. In this section, we look at how a context
is built from the aspect declarations of the object types.

The context of a state is a tuple (S, T, A) where

e S is the set of variables in scope,

o T : ObjectName — Type is a partial function from object names to
types, an object name being a variable and a sequence of reference
aspects

ObjectName = Var x Ref*

o A: Type — PAspect is a function that maps each type to the set of
aspects associated with objects of that type.

102 CHAPTER 6. FORMAL SEMANTICS

Env Store
Var || Loc | Sources Loc | Aspect |j Val | Sources
w 100 1 100 | upper || 200 3
100 { lower | 300 4
200 text ‘o 5
200 | cursor | ‘7 6
200 | mark || ‘7 7
200 cut o 8
300 text o 9
300 | cursor || ‘7’ 10
300 | mark o 11
300 cut “r 12
b 400 2 400 text “r 13
400 | cursor || ‘7 14

400 | mark “p 15
400 cut “p 16

cmd || 500 17 500 | value “p 18
Env Store
Var || Loc | Sources Loc | Aspect || Val | Sources
w || 100 1 100 | upper | 400 | 2,17,18
100 | lower || 300 4
200 text o 5
200 | cursor || ‘7’ 6
200 | mark || ‘7 7
200 cut “r 8
300 text “p 9
300 | cursor)| ‘7 10
300 { mark “p 11
300 cut “p 12
b 400 2 400 tert g 13
400 | cursor || ‘T’ 14
400 | mark “p 15
400 cut ‘“r 16
emd || 500 17 500 | wvalue e 18

Figure 6.3: A pair of Aspect states

6.5. NAMES OF LOCATIONS 103

The derivation of S is part of the CLU language definition and is not
repeated here. We shall also assume that the types of the program variables
are already known; our job is to add the typing of more general object names.
Given the context in which the type of some variable v is ¢, that is

TI[‘UH =1,
the pointer aspect declaration

t = cluster is ...
%@ aspects *e: rt, ...

extends T by making rt the type of v.e:
T[v.e] = rt.

Exactly the same rule holds for collection aspects. A set of clusters with
aspect declarations thus defines a tree of object names for a given variable
and a type for each legitimate object name. Finally, the aspects of a type
are those listed in the aspect declaration of its cluster; from

t = cluster is ...
%@ aspects a,,...,*e; 1 tey, ..., x*xc; :tey, ...

we obtain

Aft] = {a1,...,€1,...,¢1,...}.

6.5 Names of Locations

An object name defines a set of locations in a given state, obtained by viewing
the name as a path through the store. For a variable, the set contains only the
location delivered by the environment, but in general, because of collection
aspects, an object name defines more than one location. The locations given
by the object name u in state o are given by:

{o.env[z].loc} ifu=2z, € Var
locs[u], = Ulctoespu), 19-5t0(l,€).val} if u = v.e, € € Pointer
Utctoespo), -sto(l,€).val if u = v.e, e € Collection

104 CHAPTER 6. FORMAL SEMANTICS

6.6 Well-formed States

An Aspect state o is well-formed at a particular point in the program if:
1. The environment maps exactly the set of variables S that are in scope:

dom(o.env) = S

2. The value associated by the store with each location/aspect pair is of
the right kind: unknown for a plain aspect, a location for a pointer
aspect, a set of locations for a collection aspect.

3. It is well-typed. Let us say that a location [has a type t if it has an
object name of type t, that is

Ju.l € locs[u], & T[u] =t

Then the state o is well-typed if every reachable location has exactly
one type.

4. Each location is divided into the aspects that are appropriate for its
type. If | is a location with type ¢t and a is an aspect, then

(l,a) € dom(o.store) & a € A[t]

Since the type associated with a pointer or collection aspect may only be
a cluster type, Aspect views the type of every location as a tuple of abstract
types. There are no union types which would allow a reference aspect to
point either to one type or another and so the state never has cycles. Of
course a cluster may behave like a union type or be implemented by a union
type, but its Aspect representation is always a tuple.

6.7 Procedure Specifications

It is convenient to define some meta variables for the syntactic categories
given before:
a,b,c € Aspect = Plain + Ref
e,f,g € Ref = Pointer + Collection
z,y,2 € Var

6.7. PROCEDURE SPECIFICATIONS 105

An object name is a variable name and a sequence of reference aspects:
u,v,w € ObjName = Var x Ref*

An aspect expression is either an aspect and an object name, or a variable
name:
a, B3,y € AspectEzpr = Var + (Aspect x ObjName)

The concrete syntax denotes aspect expressions as z() for a variable and a(u)
or u (when the aspect is anonymous) for an aspect of an object. In addition
to a, etc., we shall use z() and a(u) as meta expressions.

A procedure specification is a series of assertions, whose abstract syntax
is:

ProcSpec = Assertion™
Assertion = Alloc + Dep + Binding + Invar
z:t € Alloc = Var x TypeEzxpr
a—fB € Dep = AspectExzpr X AspectExzpr

a:— 3 € Binding = AspectExpr x AspectExpr

The semantics needs to be given only for elementary assertions of this
form, because a compound assertion like

o,B,...—7,6,...

is equivalent to the set of elementary assertions:
oy, a6, B—7v,B4,...

Instead of defining the operator « (“affected by”) to include the implicit
dependencies of Chapter 4, we shall assume that each dependency, explicit
and implicit, ’s given by a dependency assertion. The assertion a « 3 in
which « means “affected by” is thus replaced by

a‘_ﬂvae—’h’--',a‘_‘yi,"',a‘_‘)'n

where the +; are the reference aspect expressions of a and # and in which
— now means “depends on”. Recall from Chapter 4 that the reference aspect
expressions of a(z.ey.e;..6,,) are e,(z.€y..€4_1), €n_1(Z.€1..€4_2), and so on, as
far as z().

We shall also assume that the implicit invariance of an omitted aspect
a has been made explicit with the assertion a «— «a, and that each binding
assertion a:— f is accompanied by a dependency assertion a— 3 when a # 3.

106 CHAPTER 6. FORMAL SEMANTICS

6.8 The Meaning of Aspect Expressions

In a dependency assertion, an aspect expression a(u) denotes a set of sources.
We can define the sources of the a aspect of the object in a different state
from the state in which the object is named by u. So sources[a]J, is the set
of sources of a in ¢/, with the naming of locations determined by o

sources[a]? ’

e _ | o'.env]z].sources if a = z()
"7 Uietoesgu}o ©'-8to(1, @).sources if a = a{u)

In a binding assertion, an aspect expression denotz=s a set of values. Since
binding is restricted to reference aspects, this value set is always a set of
locations. So define values[a]?: to be the values of « in state o', again under
the location naming of o:

{o'.env[z].loc} if a = z()
values[a]y, = ¢ Uletoesfu), 107 -sto(l, €).val} if a = e(u), e € Pointer
Uietoesfu, @-sto(l,€).val if a = e(u), e € Collection

6.9 The Meaning of Assertions

Suppose now that we have a procedure with a signature
p = proc(arg,:t,, argy:ty,...) returns (1,t2,..)

annotated with a specification that is a sequence of assertions. In this section
we shall look at binding and dependency assertions; allocations are treated
later. The meaning of such a specification is a pair (TR, MOD) comprising
a transition function that maps each pre-state to a set of post-states:

TR: State — P State

and a modification function that gives, for each pre-state, the set of loca-
tion/aspect pairs that may be modified:

MOD: State — P(Loc x Aspect)

The MOD function is used only to compute control dependencies.
The assertions define the transition function implicitly in the following
way:

6.10. DISCUSSION OF ASSERTION SEMANTICS 107

1. A dependency a « /3 asserts that each source of § in the pre-state is a
source of o in some resulting post-state:

Vpre. sources[B]}7 < L U sources[[a]]’;‘;:‘]

0st€ TR(pre)

2. A binding o :— 3 has a similar meaning. It says that each location
denoted by 3 in the pre-state must be included in those denoted by «
in some resulting post-state:

Vpre. values[B]P7: C [U values[[a]]:‘,’,:'}
post€ TR(pre)

In addition to these constraints, there is a frame condition on TR. The argu-
ments and their types define a set of locations in the store that is reachable
by the procedure. No location outside this region may be affected at all—the
stores of the pre- and post-states must match on these locations.

The dependency assertions define the modification function MOD. If the
set of dependency assertions in the specification (before making the depen-
dencies of invariant aspects explicit) is

{ai(w;) « bi(v;)}

then the aspect/location pairs that might be modified from a pre-state of pre
are
MOD(pre) = U(locs[[u,- Pre X {ai})

t

6.10 Discussion of Assertion Semantics

The above definitions are motivated by discussions in earlier chapters. Let
us review some of the subtleties that arose, and see how they are reflected in
the form of the semantics.

1. Existence. An Aspect assertion claims that some effect is possible in
some execution of the procedure, not that it occurs in every execution.
This is expressed in the semantics by forming the union over the post-
states of the sources and values of a.

108

CHAPTER 6. FORMAL SEMANTICS

2. Prenaming. The naming of locations may differ in the pre- and post-

states: after all, one of the reasons for calling a procedure is to change
the structure of the store. To avoid complex interactions between as-
sertions, all object names are interpreted in the pre-state, and sources
must be defined over two states. The dependency assertion thus de-
scribes what happens to the sources of a given node, without concern
for whether that node may undergo a change of name. In fact, it is
essential to name objects in the pre-state because we might want to
describe mutations of objects that have no names in the post-state
(because they are no longer reachable from the procedure arguments
or results).

. Invariance vs. Dependency. The assertion a « a differs from the omis-

sion of an assertion for a in two ways. First, the dependency assertion
implies additional pointer dependencies: since « is read and written,
its final value is made dependent on the reference aspects of a. Second,
it implies a possible change in the value of a (and thus contributes to

MOD).

. Collections. An aspect expression like a(z.el) may refer to several loca-

tions if el is a collection aspect. What then does an assertion like
a(z.el) « b(z.el)

mean? The set union expression in the definition of the sources function
resolves this by flattening the sets of sources. The assertion therefore
says that any source of the b aspect of any location in z.el must be a
source of the a aspect of some location in z.el.

The union over post-states in the definitions causes a similar flattening.
The assertion

el(z) :— el(z)

would otherwise imply that, in every execution of the operation, the
objects in el(z) after include the objects in the el(z) before. The actual
definition, in contrast, says that the set of post-objects in el(z) over
all executions subsumes the sets before. In other words, any element
that was in el(z) before will be in el(z) after in some Aspect execution

6.11. THE MEANING OF ALLOCATION ASSERTIONS 109

of the procedure. Of course, there may be no CLU execution in which
a particular element is in el(r) afterwards; the Aspect executions are
a conservative estimate that generally includes more CLU executions
than are actually possible.

This kind of assertion occurs in operations that delete some element
from a collection, such as stack[t/$pop in Figure 3.7 or arrayft/$trim in
Figure 5.3.

6.11 The Meaning of Allocation Assertions

An allocation clause a:t in a procedure specification causes an object to be
allocated in the store in some location [, which is then assigned to the variable
a in the environment.

The variable a is local to the specification. It has no significance in the
calling context, since it is only used so that the allocated object can be
linked to objects reachable from the arguments or to result objects. The
semantics, therefore, must ensure that these local variables do not appear in
the environment of the caller.

This is achieved by an existential quantification over these variables. As-
sume that a transition relation TR, has been defined for states in which the
environment includes bindings for the allocated variables. Then define

hide(o, A) = (o.env © A, g.sto)

which is the same state as o but with the bindings of the allocated variables

A removed from the environment. Finally, define the true transition relation
to be TR, where

o' € TR(o)
<
Joo, 0. hide(oo, A) = o & hide(og, A) = o' & o' € TRo(00)

6.12 The Meaning of the Translation Dependency

The checking of abstract operations (Chapter 5) involved translating abstract
dependency assertions into special assertions of the form a — 3. To define
the meaning of these assertions, we define sources*[a], to be the sources of

110 CHAPTER 6. FORMAL SEMANTICS

the aspect expression a and the sources of all the reference aspect expressions
that determine the naming of the object given by a, in the state o:

o.env[z].sources ifa=2z(), ze€ Var
sources*[a]s = { Uleisesu.rl, 7-St0(1, a).sources
U sources*[r(v)], if a = a(v.r), 7 € Ref

Theun the meaning of @ — 3 is that the sources of 3 in the pre-state are
in luded in the sources that determine the value of a in the post-state:

Vpre. sources[B]5r: S U sources” [a] post
ost€ TR(pre)

6.13 The Meaning of the Program Constructs

This section gives a semantics of the CLU program constructs in terms of
Aspect states. In tandem with the semantics given above for specifications,
this allows us to define the behaviour of code containing calls to procedures
with specifications (and perhaps no code) and to judge a procedure’s imple-
mentation against its specification.

The semantics is operational: it describes the possible sequences of states
that can occur during the execution of a program. It uses Plotkin’s scheme
in which the meaning of a program is given by evaluation relations that are
defined inductively over the syntax of the programming language. There are
two evaluation relations, the state transition relation

— : Statement , State — State
and the modifies relation
A : Statement, State — P((Loc x Aspect) U Var)
The assertion (o,S) — o', which says that the triple (¢,5,0’) is in the
transition relation, means that when the statement S is executed in state o,
there is an execution that terminates in the state o’. Note that — really is

a relation and not a function. The execution is non-deterministic and there
may be several ¢’’s for a given o and S.

6.13. THE MEANING OF THE PROGRAM CONSTRUCTS i

The assertion {o,S) A M, which says that the triple (¢, S, M) is in the
modifies relation, means that when the statement S is executed in state o,
the variables and location/aspect pairs of M may be modified.

Unfortunately, these relations cannot be defined independently. The mod-
ifies relation is needed to determine transition relation for an if-statement or
a loop, because the control dependencies arise from the aspects that are
modified. Also, aliasing make it impossible to calculate the modifies relation
without the transition relation. The variables appearing syntactically in a
statement do not limit the scope of the modifications; we need to know the
object structure of the state. To make the interdependence of the relations
clear, the rules are given side by side.

The relations are defined by inference rules. The rule

£Q
R

says that given the premises P and @, one can deduce the conclusion R. A
rule without premises can be written without the line. The premises and
conclusions are that certain tuples are in the relation. We are assuming that
the relations contain exactly the tuples that can be inferred using the rules,
and no more.

The simplest rules are for sequential composition:

(Ua 51) — 0y

<U, 51) —= 01 (U, Sl) A 1\41
(0’1,52) — 0 (0’1, 52) A M,
(0,51;82) — o2 (0,51;5:) A MU M,

The rule for the transition relation (on the left) expresses the convention that
execution proceeds downwards through the code statement by statement. S;
and S; might be compound statements, so the effect of series of statements
is obtained by applying this rule repeatedly. The modification rule (on the
right) says that anything that might be modified when one statement is
executed alone might be modified in the composition. Note the assertion
on — in the modification rule; the modifications of the second statement
cannot be calculated without knowing what state it is executed in.

The if-statement rules are non-deterministic. Since the Aspect state hides
the value of the conditional expression, we cannot tell which branch gets

112 CHAPTER 6. FORMAL SEMANTICS

taken, so either may happen. There are two rules for each relation of the
forms:

(U, St) — 0

(CT, S.) A A/I,' (0, S,) —_— 0
o' = cd(0i,0,b, M;) (0,S:) A M;
(o,if b then S, else S;) — o (o,if b then S else S;) A M;

with i = 1,2. The function cd adds the control dependencies. The state
cd(oi,0,b, M;) is obtained from the state o; by adding to the sources of the
variables and the location/aspect pairs of M the sources of the variable? b in
o. This makes the changed components dependent on whatever b depended
on in the state in which it was evaluated.

There are two while-loop rules for each relation. Again, we cannot de-
termine the value of the condition, so it is always a possibility that the loop
terminates without executing the body at all:

(o, while bdo S) — o (o, while bdo S) A {}

The other possibility is that the body of the loop is executed:

(6,5) — o' (0,8) — o’
(0,S) AM - (0,S) A M
(cd(o’,0,b, M), while b do S) — o” (o',while bdo S) A M’
(o, while & do S) — o” (o,while bdo S) A MU M’

It may help to read these backwards. The transition rule on the left can
be read: “to execute while b do S in state o, first execute S in state o,
then execute while b do S again from the resulting state, augmented with the
control dependencies of M on bin ¢’. Note that the control dependencies have
to be added for each iteration, because the body of the loop can affect the
aliasings. The execution of a statement can thus cause different modifications
on different iterations.

The loop rules define the loop execution inductively. The first pair of
rules, for termination, are the base case; the second pair give the recursion
that unfolds the loop. By applying the rules for the recursive case for ever,

2This is a simplification: a conditional expression may be a procedure call with side-
effects. Any if-statement can be translated easily into this form.

6.13. THE MEANING OF THE PROGRAM CONSTRUCTS 113

an infinite execution may always be obtained. This is another example of
the Aspect semantics being a conservative estimate, generally allowing more
executions than are possible. An Aspect specification is only concerned with
the finite executions, so the infinite ones should be ignored.

Also, there is usually an infinite number of finite executions that end in
infinitely many different states, because a loop body may allocate elements to
a collection. Nevertheless, since there a finite number of variables and aspect,
only a finite number of states can be distinguished by a srecification. This
is what makes Aspect tractable: the infinite set of possible states resulting
from a procedure can be summarized by a finite set.

The transition rule for assignment shows how the environment is updated?:

(0,2 :=y) — (0.env @ {z — o.envy]}, o.sto)

The new environment is like the old one, but with £ mapped to the location
and sources of y. The result of the assignment is thus to make z and y
aliases. CLU’s assignment involves no copying of objects; in terms of Pascal,
it is like an assignment on pointer variables. There is thus no change at all
to the store. The modification rule makes this clear too; only the variable z
is altered:

(0,2 =) A {z}

Finally, the rules for procedure call, which use the specification of the
procedure rather than its body:

SPEC, = (TR,, MOD,)

Opre = (€1, 0.5t0)

Tpost € TR(Tpre) SPEC, = (TR,, MOD,)
o' = (€3, O post.5t0) M = MOD (o) U {z,,z3,...}
(0,21, 23, ...:= p(y1,¥2,...)) — &' (0,21, T2, ...:=p(Y1,¥2,-..)) A M
Let us assume that the formals of the procedure are called arg,, arg,, ..., arg,,.

The transition rule breaks the call into three phases: the binding of the for-
mals to the actuals, giving the environment

e1 = {{arg; — c.envf[y;]) | i € 1..n}

3@ is functional override: (f @ g)(z) is g(z) when z is in the domain of g and f(z)
otherwise.

114 CHAPTER 6. FORMAL SEMANTICS

then the execution of the procedure itself (giving a state specified by TR);
and finally a binding back of the result objects to the z;, giving the final
environment:

e2 = o1.env @ {(z; — o".env[result;]) | i € 1..n}

which is just the original environment altered by the assignment to the z;.

The modification rule says that, in addition to the location/aspect pairs
modified by the body of the procedure, the variables r; are modified because
of the assignment of the result objects. Recall that the MOD function maps
states to location/aspect pairs only, indicating that the body of a procedure
cannot modify the environment.

6.14 Specifications of Some Built-in Types

The reader may well feel cheated at this point. The semantics of the pro-
gram constructs is almost independent of the structure of the Aspect state.
Has something been swept under the rug? The answer is yes; the rug is
the built-in types. A CLU program without procedure calls can do nothing.
Assignment affects only the binding of variables to objects, and thus cannot
affect any object; at the very least we need operations like + to construct
new objects and operations like = to examine them.

Most of the complexity of the CLU semantics is thus given by the specifi-
cations of its built-in types. Here we shall look only at some representative
examples. Simple immutable types have specifications like that of integers
(Figure 6.4), based on a single anonymous aspect declared as “value”.

It is not possible to specify CLU records because record is not a type: the
number of fields varies, so it cannot be parameterized by a fixed number
of type variables. If we take some syntactic liberties, however, a kind of
specification can be written (Figure 6.5). We have already seen an array
specification (Figure 5.3); together with integers and records, this defines a
basic language®.

“The checker, of course, has full specifications of all the built-in types, including strings,
files, variants, etc.

6.14. SPECIFICATIONS OF SOME BUILT-IN TYPES 115

int = cluster is add, times, equal, ...
%@ aspects value

add = proc (i, j: int) returns (int)
%@ result — i, j

times = proc (i, j: int) returns (int)
%@ result — i, j

equal = proc (i, j: int) returns (bool)
%@ result — 1, j

Figure 6.4: Part of the built-in integer specification

record = cluster [t;, t, ...: type] is set_c,, get_cy, set_c2, get.cy, ...
%@ aspects *ci: 4y, *ca: by, ..., e 4

set_¢; = proc (r: record, e: t;)

%Q c;(r) :— ()

get_c; = proc (r: record) returns (t;)

%@ result() :— ci(r)

Figure 6.5: Part of the built-in record specification, simplified

116 CHAPTER 6. FORMAL SEMANTICS

6.15 Summary

We have seen in this chapter how the ideas of the preceding chapters can
be formalized. We started by defining the Aspect state, an abstraction of a
CLU computation. An object name composed of a variable and a sequence of
reference aspects denotes a set of locations in a state; an aspect expression
then denotes a set of values or a set of sources, according to whether it
appears in a binding assertion or a dependency assertion.

Each assertion of a procedure specification defines a predicate over the
abstract executions (pairs of Aspect states) of the procedure. The meaning of
a series of assertions is just the conjunction of these predicates. By prenaming
objects, we also ensured that the meaning of an object name in one assertion
is unaffected by other assertions. The specifications are thus declarative and
compositional.

Having defined the meaning of a procedure specification in abstract terms,
we had to provide a similar view of CLU code so that the notion of satisfac-
tion would be well-founded. The CLU semantics was far simpler than the
specification semantics, because the complexity of CLU is embedded in the
behaviour of the built-in types.

The purpose of the semantics is to clarify the meaning of an Aspect
specification. There are two important applications of the semantics that are
beyond the scope of the thesis. First, given a conventional formal semantics
for cLU, we could prove a soundness theorem relating the two semantics,
showing that an unsatisfied Aspect assertion is indeed always evidence of
a bug. Second, we shall see in Chapter 7 that the checker approximates
even the Aspect state, and thus has its own semantics. The correctness of
the checking mechanism could be proved by relating that semantics to the
semantics of this chapter.

Chapter 7

The Checker Mechanism

The semantics of Chapter 6 defines what it means for an implementation to
meet a specification. Since the program constructs were defined operationally
and the assertions were defined as predicates on states, checking might be just
a question of performing all possible executions and then checking their final
states against the assertions. Unfortunately, this is not possible. Because a
loop body may allocate objects to a collection aspect, the Aspect state may
grow without bounds, and in general there are infinitely many final states.

The first section of this chapter explains this problem in more detail,
showing why some approximation is needed. The second section presents the
particular approximation that has been implemented in the Aspect checker.
There may be better approximations; this should be viewed only as demon-
stration that a simple one exists that leads to efficient checking without much
loss of completeness.

The third and final section of the chapter describes some other features
of the checker beyond the checking mechanism itself, such as storing and
retrieving specifications, and gives an example of a session using the checker.

7.1 The Need for Approximation

Aliasing and dynamic allocation conspire to make unbounded states possible.
Suppose we have a loop like

while b do
e: t:= ténew ()
arrayft/8addh (a, €)

end

117

118 CHAPTER 7. THE CHECKER MECHANISM

that allocates a fresh object in each iteration, extending an object by binding
to a collection aspect. How many executions of the loop do we need to
consider? The answer depends on how many names are available later in the
code. If we had two variables, for example, that we could bind to different
elements of the array, then we would have to consider states in which the
array has three elements. Otherwise, having bound both variables, it would
appear that mutating both of them would eliminate all existing dependencies
of the elements, thus losing dependencies that could be associated with other
elements.

This does not make the semantics intractable. There are, after all, only
a finite number of possible object names in any given context, so there are
thus only a finite number of distinguishable states. But it does rule out
a simple minded execution of the semantics, since one cannot predict how
many object names there will be later in the program.

7.2 The implemented Approximation

Instead of performing all possible executions, the checker executes the proce-
dure over a single approximating state that represents a (potentially infinite)
set of Aspect states. By ensuring that the approximation is conservative—
that is, it includes at least -all the possible Aspect states—the checker can
guarantee that any required state missing from the set given by the final
approximating state must also be missing from any actual final state. Some
bugs will go undetected because of the approximation, but the error report
will still be free of spurious listings.

7.2.1 The Approximating State

The approximating state represents a set of Aspect states in two ways. First,
a pointer aspect may have several values that correspond to possible rather
than certain references. So two states in which a is aliased to b in one and ¢
in the other are represented as a single state in which a points to both b and
c. Second, a set of objects referenced by a collection aspect may be merged
into a single object. The first approxim ~tion is necessary to represent a set of
Aspect states as a single state; the secund, and more critical, approximation
is needed to represent an infinite set.

7.2. THE IMPLEMENTED APPROXIMATION 119

If two objects are pointed to by the same set of pointer aspects, they
cannot be distinguished. They may then be merged together: one is discarded
and the dependencies and values of its aspects are added to the other’s. This
“garbage collection” must make sure not to discard an object that may be
aliased in the calling context. The approximating state therefore marks those
objects that existed in the pre-state of the procedure and never discards them.
This marking is information that is not present in any of the Aspect states
that an approximating state represents, although it could be obtained from
the pre-state.

Figure 7.1 shows the definition of the Aspect state from Chapter 6 and,
below it, the definition of the approximating state used by the checker. The
additional component Multilocs marks the objects that represent collections
and Prelocs marks the objects that existed in the pre-state. Note the value
of a reference aspect is always a set of locations in the approximating state
and the environment maps variables to sets of locations too. There is still,
however, only one set of sources for the variable; they represent the depen-
dencies that determine which location the variable names. The store likewise
has only a single set of sources for each location/aspect pair.

Each approximating state ¥ represents some set of Aspect states v(Z).
One can think of obtaining these in two stages. First, each collection object
in Multilocs is expanded into a set of objects whose dependency and value
sets are subsets of those of the collection object. Each possible expansion
gives a different state. Second, each of these expanded states is trimmed by
removing all but one of the values of each pointer aspect, and taking subsets
of the dependencies. Again, each possible trimming gives a diftferent state.

Information is lost in the approximation because v(X) includes more As-
pect states than it should. If we took two Aspect states oy and o9, and
approximated them with the state ¥;2, we would find many other states
besides them in ().

For dependencies, this loss of information is-inconsequential, since the
dependencies are flattened anyway in the Aspect specification against which
the final state will be checked. It is not possible to say that an aspect has
either some set of dependencies or some other set; the dependency assertion
gives a lower bound on the total set of dependencies.

In contrast, the approximation is damaging for the value sets. Suppose
that in oy the variable £ names object O and y names P, and in o2, £ names
object P and y names O. Then X;; will assign both O and P to z and likewise

120

The Aspect State:

State
Env
Store
Val
Aspect

The Approzimating State

State
Env
Store

Val
Aspect
Multilocs
Prelocs

CHAPTER 7. THE CHECKER MECHANISM

Env x Store

Var — Loc x PSource

Loc x Aspect — Val x PSource
Unknown + Loc + P Loc
PlainAspect + Pointer 4+ Collection

Env x Store x Multilocs x Prelscs
Var v P Loc x PSource

Loc x Aspect — Val x PSource
Unknown + P Loc

FlainAspect + Pointer + Collection
PLoc

P Loc

Figure 7.1: Approximation of the Aspect State

7.2. THE IMPLEMENTED APPROXIMATION 121

to y, including a state in which both z and y name O. A possible aliasing of
z and y is thus implied even though it cannot occur in any execution. Bogus
dependencies might be inferred as a result and a bug missed.

7.2.2 Executing Code

Recall, from Chapter 6, that a procedure specification claims tkat some set
of post-states are possible outcomes of every pre-state. A complete check
would require evaluating the code from all possible pre-states. The checker
evaluation uses only a single state, so an approximating state must be chosen
that is likely to catch the most bugs. This "urns out to be the state with as
little uncertainty as possible: each variable and pointer aspect has a single
value and the are no internal aliasings of the arguments.

All the state changes that o-.r in the execution are due to procedure
calls or assignment statements. Procedure calls are handled by executing
their specificati- 1s. de~cribed in the next section. Assignments are executed
according to the semantics of Chapter 6, excert ** .t a variable’s entry in the
environment acquires a set of values rathe. than a single value.

Anp if statement can ' ad to two states, one for each branch. To include
beth o, these in one approximating state, the branches are executed sepa-
-ate. 1d the resulting states arc .aerged together. The merge of two ap-
pro> .ating states ¥; and ¥; must represent at least the union of the Aspect
states they represent:

v(merge(¥1,52)) 2 ¥(Z1) U 4(E3)

The simplest way to perform the merge is to amalgamate the components
of the two states. Since they are in the scope, they must have the same
variable sets. The new environment is obtained by giving each variable the
union of the values and sources of the two states. The new store, similarly, is
formed by unioning the values and sources of the common aspect /locations,
and adding the mappings for those locations that are allocated in only one
of the two states.

Two problems arise in handling loops: finding a fixed point and prevent-
ing unbounded growth of the state because of allocations within the loop
body. To find a fixed point state that accumulate the effects of any num-
ber of iterations, the checker merges the states resulting from zero, one, two

122 CHAPTER 7. THE CHECKER MECHANISM

iterations, etc. This process stops when the accumulated state no longer
changes.

Two states may be equivalent even if they are not the same. If there
are two allocated locations that are not in Multilocs (that is, do not rep-
resent collections of objects) with the same parents (that is, pointed to by
the same location/aspect pairs or variables), they cannot be subsequently
distinguished. The checker therefore does compaction, reducing the state to
a canonical form in which allocated locations are merged, by removing one
and adding its values and sources to the other. Also, locations may become
unreachable; these are just lopped off.

Compaction is always performed after each merging of two states. Since
the accumulated loop state grows monotonically, the fixed point can be found
cheaply by a simple trick. The checker keeps a count of the number of values
and sources in the state and stops executing the loop when it no longer
changes.

Compaction solves the problem of unbounded growth too, since the of-
fending allocated locations are merged into existing locations.

7.2.3 Executing Specifications

To execute a procedure call, the checker looks up its specification and exe-
cutes that instead. In Chapter 6, we gave the meaning of an assertion as a
claim that the procedure results in at least certain post-states. To catch as
many bugs as possible, we assume the weakest valid implementation of the
called procedure, and execute the specification to give exactly the minimal
set of post-states.

There are three complications. First, since the object names that appear
in aspect expressions all refer to locations in the pre-state, and since executing
an assertion may change the structure of the state, the checker must start by
constructing a mapping of object names to locations, and only then execute
the specification.

Second, the assertions are conjunctive; if one says that an aspect should
have the dependency sources S; and another says the same aspect should
have S;, the checker must satisfy both assertions and give it S, U S,.

The third complication is a result of the approximation. Suppose we want
to execute the dependency assertion

a(z) — b(y)

7.3. USING THE CHECKER ' 123

in an approximating state in which the variable z points to two locations. In
one of the states represented by the approximating state, z does not name
one of those locations, so we cannot just replace its sources with the sources
of b(q). Because of the uncertainty, the checker adds the sources of b(g) to
the sources of the a aspect of each location.

The sources of an aspect expression must be obtained from all the loca-
tions it may refer to. For example, Lhe set for b(q) is the union of the source
sets of the b aspect of all the locations called q.

As a general rule, values and sources are added to and not replaced when-
ever the object name on the left-hand side of the assertion refers to more than
one location. Thus, if the location is in tue set Multilocs it represents a col-
lection of locations, and the same conservative approach is followed.

7.2.4 Checking The Final State

The result of executing the procedure is a single final approximating state.
Each of the assertions in the specification is checked against this state, and
any omitted values or sources are displayed as bug messages.

Allocation assertions cannot be checked directly (especially since the
checker can discard allocated locations from the approximating state if their
presence is not observable). Instead, the dependencies and values of their
aspects are checked indirectly. Suppose, for example, that we have a specifi-
cation that contains these assertions:

n: i
a(n) « b(z)
r(y) :=n()

Although we cannot find the allocated location n, we can infer (from the
binding) that either it is called y.r in the post-state or it has been absorbed
into y.r. The dependency assertion thus implies that the a aspect of the
location called y.r (in the post-state) has a dependency or b(zx), which is
easily tested.

7.3 Using the Checker

The checker has several functions: storing and retrieving specifications, check-
ing specifications for consistency and, of course, checking code against spec-

124 CHAPTER 7. THE CHECKER MECHANISM

ifications. It is implemented in CLU in about 15,000 lines of code.

The checker runs in three phases. First, the annotated code is parsed and
the specifications are analyzed for simple consistency properties (principally
that aspect expressions in procedure specifications are well-formed). The
specifications are saved as part of the state of the checker. Second, the usual
compiler static analysis—including type checking—is performed. Third, the
code of each procedure is checked in turn against its Aspect specification,
using the saved specifications for procedures it calls.

Aspect specifications may be organized in libraries. To set up a library,
the user runs the specification-reading phase of the checker on some cLU
programs. The checker extracts type and procedure specifications from the
code, parses and checks them and saves them in its internal state. The
user then requests that the specifications be dumped to a library file in a
compacted form. When, in a later invocation of the checker, the user wants
to check a program that uses these specifications, the library file is loaded
and the specifications become immediately available. The built-in types and
operations are pre-specified and are automatically loaded when the checker
is invoked.

A sample interaction with the checker is shown in Figure 7.2. I started by
invoking the checker in the Unix shell. Then, at the “command:” prompt, I
told the checker to load the specifications of the integer set in the file called
“intset.spc”. I then invoked the checking of the remove_dupls procedure!
in the file “remove_dupls”. The checker examines each kind of termination
separately. Since the procedure has no exceptions, there is only the normal
flow of control to check. The assertion on line 3 is found to be violated.

7.4 Summary

The Aspect semantics is not tractable because the combination of aliasing
and dynamic allocation lead to unbounded states. Checking can still be per-
formed with little loss of completeness by representing the set of possible
Aspect states with a single approximating state. This is not by any means
the only way to approximate the Aspect semantics. I have never found the
loss of information to be significant, but there may be applications in which
more precision is required. Perhaps, on the other hand, a cruder approxima-

1 Discussed in Chapter 1.

7.4. SUMMARY 125

unix> aspect
*x*xx*x* Aspect Checker Version 3, 1/1992 **k*x

command: spec intset
command: check examples

Making Aspect specs for /u/jackson/research/aspect/exe/intset.spc
Reading spec of view for cluster intset
Reading spec of procedure/iterator create
Reading spec of procedure/iterator insert
Reading spec of procedure/iterator member
time = 0.300 seconds
External Referencing Modules
intset intset
command: ch rem-dupls
Checking /u/jackson/research/aspect/exe/rem-dupls.clu
Reading spec of procedure/iterator remove_dupls
Checking flows for remove_dupls
.. normal flow...

3 BUG low(a) <- low(a) not found.

time = 1.630 seconds

External Referencing Modules
intset remove_dupls
remove_dupls remove_dupls

command: quit
urix>

Figure 7.2: A sample checker run

126 CHAPTER 7. THE CHECKER MECHANISM

tion would do instead, allowing a simpler implementation and improving the
checker’s performance further.

Chapter 8

Extensions

This chapter starts by relaxing two constraints that we have assumed so far.
The first is that the aspects of a type be independent; the second—a more
drastic one—that the user write specifications of called procedures at all. It
then discusses some limitations of Aspect and speculates on how they may
be overcome.

8.1 Aspect Orderings

The bug detection scheme assumes that the aspects of a type are indepen-
dent: that one cannot be obtained from any combination of the others. What
goes wrong if the aspects are not independent? Suppose the buffer type in-
cludes an aspect size representing the number of characters in the buffer,
and that we want to check the procedure IsEmpty (Figure 8.1) that returns
true when the buffer contains no characters. It works by calling the buffer
operation getText that returns the text of the buffer as a string.

Without any information about the relationship between tezt(b) and
size(b), the checker will infer that the assertion of isEmpty is not satisfied,
because result depends on tezt(b) and not on size(d).

To remedy this problem, the checker must be told that the size of a buffer
is derivable from its text. This information is provided as an order annotation
that follows the aspect declaration for the cluster:

aspects text, clip, mark, cursor, size
order size < text

127

128 CHAPTER 8. EXTENSIONS

isEmpty = proc (b: buf) returns (bool)
%@ result — size(b)
s: string := bufSgetText (b)
return (string$empty (s))
end isEmpty

getTezt = proc (b: buf) returns (string)
%@ result — text(b)

Figure 8.1: The problem of dependent aspects

The checker then allows a dependence on tezt(b) as a substitute for a depen-
dence on size(b) and no spurious reports are generated.

Adding extra dependent aspects is useful because it allows more bugs
to be caught. With size included in the aspects of buf, we can distinguish
operations that only provide the size of a buffer from those that provide
the tezt too. Figure 8.2 shows two implementations of a procedure that is
intended to count the number of characters between the cursor and the end
of the line. One is faulty; it calls the operation num_following that gives the
number of characters until the end of the whole buffer. Without the size
aspect, it could not be ruled out, because there would be no way to specify
that num_following gives less information about the buffer than search.

Adding derivable aspects need change only one part of the checking mech-
anism. When the checker compares the code dependencies to the dependen-
cies of the specification, it can apply substitution rules to find out whether
a required dependency really is missing.

There is a simpler way to do this, however, which requires no change to
the checker mechanism at all—only to the initial state of the procedure being
checked. Because the relationship between aspects is always a partial order,
we can represent it in the tagging of the aspects. In the initial state of the
buffer object (Figure 8.3), the tezt aspect has two tags, one of which is the
same tag as size. Making an aspect depend on tert(b) will now cause it to
acquire both tags, so that it automatically bears a dependency on size(d).
Each tag can be thought of as a lump of information; tezt(b)’s information
subsumes size(b)’s, so its tags do too.

8.1. ASPECT ORDERINGS 129

num_to_eol_good = proc (b: buf) returns (int)
%@ result «— cursor(b), text(b)
i: int := buf¥search (b, newline_char)
return (buf8getCursor (b) — i)

end num_to_eol_good

num.to_eol_bad = proc (b: buf) returns (int)
%@ result — cursor(b), tezt(b)
return (bufSnum_following (b))
end num_to_eol_bad

num-following = proc (b: buf) returns (int)
%@ result — cursor(b), size(b)

Figure 8.2: Catching more bugs with dependent aspects

clip cursor mark size

ONOX]

@ @ @ 6

Figure 8.3: The initial tagging of the buffer aspects

130 CHAPTER 8. EXTENSIONS

There may be several aspects derivable from a single aspect, and further
aspects derivable from these. An aspect must then carry the tags not only
for the aspects directly derivable from it, but also for the aspects derivable
from them, and so on.

The aspect ordering seems indispensable. It is used in the specifications
of the built-in types; arrays, for example, include an emptiness aspect (omit-
ted in the simplified specification of Figure 5.3). Nevertheless, the ordering
notion is not as flexible as it should be. It would be helpful if arbitrary rela-
tionships could be introduced, allowing aspects to be derived not only from
other individual aspects but also from combinations. The array specification,
for instance, might benefit from having both high and low aspects, but this is
forbidden. We cannot express the notion that size is derivable from high and
low in combination; the partial order only allows an aspect to be derivable
wholly from another aspect, or from any one of several.

8.2 Omitted Specifications

A procedure can be checked even if the specifications of procedures it calls
are missing. The checker must assume that each missing procedure has ev-
ery possible effect: causing dependencies, establishing aliases and allocating
objects.

This approximate specification is constructed from the procedure’s header
as follows. A set of names for the objects reachable by the procedure is
obtained from the argument and result variables and the aspect declarations
of their types. Each of these object names has an associated set of aspects,
and thus a set of aspect expressions, E say. E includes also the appropriate
pointer aspects of the environment itself: arg;() for each argument arg; and
result; () for the ith result.

The aspect expressions are then partitioned according to their type. The
plain aspect expressions are placed in Ey, say, and the reference aspect ex-
pressions in E;, E;, etc., according to their types t;, t;, etc. Lastly, the
checker adds variable names n;;, n;y, etc., for each type ¢;, naming a set of
allocated objects, one for each argument object of each type, and includes
their aspect expressions in E. The specification then contains:

e An allocation assertion n;; : t; for each allocation variable of type ¢,.

8.2. OMITTED SPECIFICATIONS 131

e A dependency assertion e, « e; for each pair of aspect expressions
e1,e2 € E, where e; is not an expression of a result or allocated variable
and e; is not an argument aspect of the environment.

e A binding assertion e, :— e, for each pair of aspect expressions e;, e; €
E;,j > 0 with the same type, again with the restriction that e; is not
an expression of a result or allocated variable and e, is not an argument
aspect of the environment.

Sometimes a specification generated in this manner works fine; sometimes
the loss of information prevents bugs from being detected. Omitting a spec-
ification is least damaging when the procedure has few arguments, each of
which has little structure, and when the procedure’s role is disjoint from the
other procedures. Ir particular, it makes sense to omit the specification of
an entire type.

The remov- _dupls procedure of Section 1.2 is an example where omission
is success ul. None of the set operations need be specified, since they play
no rol: 1n the critical aspect dataflow. The set cluster need also have no
aspect declaration. When specifications are not provided for the operations
of a cluster, an aspect declaration is worthless and the checker assigns the
type a single anonymous aspect.

Another early example illustrates the opposite. In Section 2.6, to find
a bug in exchange, we needed a specification of the called procedure sei-
MarkAtCursor. Even if its code were inlined, the bug could not be found,
because the specification expressed information that could not be tractably
inferred from the code.

Generating specifications from procedure headers alone may not be ade-
quate. In many cases, a precise specification is unnecessary, but a specifica-
tion that allows all effects will introduce so many dependencies and aliases
that checking will be confounded. There are some simple ways in which
much better specifications can be generated. If the Aspect specification of a
type includes whether or not its objects are mutable, the checker can nmit
assertions that claim to change immutable objects. Otherwise the generated
specification for setSmember(s, e), for example, allows modification of the
integer e. In the remove_dupls example, this happens to cause no problems
but it might be troublesome elsewhere.

132 CHAPTER 8. EXTENSIONS

stack = cluster [t: type] is new, push, pop, top, size
%@ aspects size, *top, **rest

push = proc (s: stackft], e: t)
%@ top(s) :— e()
%@ rest(s) :— rest(s), top(s)
%@ size(s) «— size(s)

pop = proc (s: stack[t]) returns (t)
%@ result() :— top(s)
%@ top(s), rest(s) :— rest(s)
%@ size(s) « size(s)

Figure 8.4: Specification of a stack

8.3 Pdlymorphism Problems

We saw an example of an Aspect specification of a polymorphic type in
Section 3.7: a stack whose elements could be of any type. Part of the spec-
ification is shown again in Figure 8.4. This kind of polymorphism needs no
special treatment. When the stack is instantiated, the type variable is bound
to the element type; the checker constructs a stack object from this specifi-
cation and the specification of the element type. No special interpretation
of the operations is necessary, since they do not even mention objects of the
unknown type. The aspect expression e() appearing in push is not, remem-
ber, an aspect of the variable e, but a pointer aspect of the environment.
The specification of push talks about the identity of the object e, but no
properties of the object itself.

This works fine for containers like stacks, lists, trees, queues, etc., in which
there are no interactions between the containing object and the elements
themselves: they are just inserted and removed. But for other kinds of
polymorphic objects, properties of the elements might affect the behavionr
of the container.

8.3. POLYMORPHISM PROBLEMS 133

queue = cluster [t: type] is new, engq, ...
where t has value: proctype (t) returns (int)
%@ aspects **el: t, ord, ...

rep = array [t]

new = proc () returns (cvt)
return (rep$new())
end new

enq = proc (q: queueft], e: t)
%@ ord(q) «— ord(q), ??
if value(e) > value(q[1]) then ...

end enq
Figure 8.5: Part of a polymorphic queue implementation

A priority queue, for example, might express the order of the elements
with an aspect ord (Figure 8.5). The eng operation will determine the po-
sition of the new element in the queue according to some valuation of that
element by calling an operation t$value of the element type.

The behaviour of eng cannot be fully known until the type is instantiated
and t$value names an actual procedure. By convention, the t$value operation
has certain properties (like defining a total order on the element type) but it
may not: it could even mutate its arguments.

Type checking the code of eng is tricky since it calls an unknown pro-
cedure. CLU addresses this problem by allowing the signature of such an
operation to be declared in a where clause following the cluster header. The
tvpe checker can then work in a modular fashion. In checking the queue
cluster, it assumes that t$value has the signature given in the where clause.
When queueft] is instantiated by binding the type variable ¢ to some real
type T, it checks that T has the operation value and that it has the right
signature.

The enq operation cannot be specified in Aspect. What would the de-

134 CHAPTER 8. EXTENSIONS

pendency assertion say for ord(q)? The current version of Aspect would only
allow something like

ord(q) «- ord(q), e()

which says that the ordering after depends on the object identity of the object
inserted. But we want to say that it depends on some property of the object
e itself. This cannot be done, because we do not even know what the aspects
of t are. It is not clear how to solve this problem, but it will probably involve
attaching Aspect specifications of some kind to the where clause.

8.4 Over-Specification Due to Immutable Objects

Aspect has no special treatment for immutable objects. This can lead to
over-specification: an Aspect assertion may make finer distinctions than are
observable in CLU. For example, if 7 is a positive integer, the binding

result() :— i()
is satisfied by return (i), but not by

jrant := 0

while true do
if i = j then return (j) else j := j+ 1 end
end

because the object j (according to Aspect) is never the same object as :. But
the two cases are indistinguishable: if two integers are equal, there may be
no way to tell whether they are the same object.

Binding assertions cannot be eliminated because there is no other way
to express the equality of the aspects of different objects. Also, without
binding assertions, specifying that one object acquires each of its aspects
from another object demands a dependency assertion for each aspect.

Perhaps a binding assertion should have a different meaning for im-
mutable objects. It should imply only that the bound objects have equal
value. Mention of the identity of an immutable object should be forbidden,
or it should somehow be converted into an aspect denoting its value. This
means, at the very least, that the immutability of a typc has to be specified.
This information would be useful anyway for generating specifications when
they are missing (Section 8.2).

8.5. OVER-SPECIFICATION DUE TO ALIASING 135

pair = record [one, two: foo]

funny_set = proc (p, q: pair, f: foo)
%@ one(p) :— f()
%@ two(q) :— f()
pair$set_one (p, f)
pair$set_two (q, f)
funny_set

Figure 8.6: An example of over-specification

8.5 Over-specification Due to Aliasing

Binding assertions are sometimes too strong, and there is no way to express
a weaker specification that still makes sense. Recall (from Section 6.8) that a
binding assertion gives the values of the post-state aspect for every possible
pre-state. Suppose we specify a procedure that binds an object to the first
field of one pair and the second field of another (Figure 8.6). The first
binding assertion says that, whatever the pre-state, the value of the one field
of p in the post-state is equal to the identity of the object f. The omission
of bindings for two(p) and one(gq) implies their invariance.

This specification is not satisfied by the given implementation, because
if p and ¢ are aliased, a change to one(p) is a change to one(q) also, so the
implicit invariance of one(q) is violated. :

To resolve this problem, Aspect could allow different bindings to be spec-
ified for different aliasings of the pre-state, or a precondition saying that the
procedure’s behaviour is unconstrained when certain aliases are present. This
situation does not seem to arise much in practice, however. Moreover, the
checker would not give a spurious message anyway, because it only examines
the procedure for initial states without internal aliasing.

8.6 Values for Plain Aspects

Aliasing forced us to give values to reference aspects (Chapter 3). We could
equally well have given values to plain aspects; the distinction was a prag-

136 CHAPTER 8. EXTENSIONS

matic one. In fact, there are several cases in which it would be useful to do
this.

An insert operation on a container object that has ai aspect emp (whether
the contairer is empty or not) might currently have the dependency assertion

emp(a) — 0

which says, effectively, that the emptiness of the array is set to constant. If
the plain aspect emp were to have values true and false, we could say that
the array is non-empty after:

emp(a) :— false

So long as there are a finite number of values of a plain aspect, this should be
no harder to check than regular bindings. But the checker could now treat
the conditional expressions of if-statements and loops differently, branching
appropriately when the expression has only a single value.

Giving values to plain aspects becomes much more useful if conditional
assertions may be written. Suppose we specify a queue with two aspects:
front, a pointer aspect to the element at the front of the queue and rest, a
collection of the remaining elements. We might naively specify the enqueing
operation as:

enq = proc (q: queue, e: t)

%@ rest(q) :— rest(q), e()

This specification is wrong because, when the queue is empty, the new ele-
ment becomes front and rest. The correct specification is thus disappointingly
crude, since it cannot distinguish the two ends of the queue. If binding as-
sertions could be made conditional on emp(q), the cases could be separated
and the distinction made whenever the queue is known to be non-empty.

Chapter 9

Conclusion

This chapter reports on some experience using Aspect. It relates Aspect to
some similar research, and discusses them in the light of the principles that
guided the design of Aspect. It ends with a brief assessment of Aspect’s
contribution and the outlook for the future.

9.1 Experience

Aspect has undergone three iterations. This thesis describes the third ver-
sion. The first (described in [Jac91)) had no clear model of references between
objects, so, amongst other problems, aliasing was not expressible and spuri-
ous bugs were reported when a dependency due to a side-effect was not de-
tected. There were abstraction functions, but they were not fully exploited:
they were used to compare two specifications of each abstract operation—one
in representation terms and one in abstract terms—both of which had to be
provided.

I discovered flaws of the first version in a series of small experiments (see
Table 9.1). I started by specifying CLU’s built-in operations and types. I
taught Keith Randall, an undergraduate, how to use Aspect, and together
we wrote specifications of some code that had been running without manifest-
ing bugs for several months. This old code was partly from the LP theorem
prover [GG89], and partly from the Aspect checker itself. The Aspect specifi-
cations of LP were based on detailed informal specifications that had already
been written. To our surprise, we found a bug in LP: an unstated precondi-
tion was necessary to ensure the correct working of a procedure. We did not
discover whether there was a calling context that would have caused the bug

137

138 CHAPTER 9. CONCLUSION

First version, January 1991

Example | Number of lines Bugs detected

Code | Spec Aspect | Run-time
Built-ins | - 500 - -
Old code | 6500 | 1700 1 -
New code | 1475 | 720 3 11
Third version, January 1992
Example Number of lines Bugs detected
Code | Spec Aspect | Run-time
New LP help | 261 96 2 1

Table 9.1: Some figures from small experiments

to manifest itself.

Keith also developed some small programs, specified them with Aspect
and ran the checker every time he compiled them. This new code comprised a
program to play “Mastermind” (a simple matching game) and a toy relational
database. QOut of 14 bugs in this code that remained after compilation, 3
were discovered by Aspect. Four more would have been discovered if the
checker implementation had been more complete (by handling dependencies
on constants). Aspect would then have halved the number of bugs that
escaped the type checker.

I had hoped that aliasing would be rare enough that spurious messages
would not be a problem. Unfortunately, there were so many that one of the
sound messages went unnoticed, lost in the thicket. Unlike Pascal, cLU does
not treat aliasing as a rare complication: it is a basic idiom. The standard
way to update a data structure is to assign one of its components to a variable
and call a procedure with that variable as an argument. The specifications
were also far too long (almost half the length of the code).

These two problems spurred the design of the second version of Aspect.
The new model introduced pointer aspects, eliminating spurious messages
completely. It used abstraction functions to check code against abstract
specifications. Combined with new binding assertions, this reduced the size
of specifications by about 60%.

9.2. COMPARISON TO OTHER SCHEMES 139

Playing with the second version revealed some inconsistencies in the
model. The elements of an array were treated as a single object, which led
to mistakes in the dependency construction. So I introduced the collection
as a second kind of reference aspect.

So far, I have only been able to try the third version on a small example.
I built a new help function for LP, which works like the emacs “info” facility.
It is implemented in 261 lines of code! and uses about 2000 lines of existing
LP code. I wrote specifications of my new code (96 lines) as well as the
pre-existing abstract types that it uses. I found 2 bugs with Aspect and 1 at
runtime.

No strong conclusions can be drawn from this limited experience. It does
show, however, that Aspect specifications can be written for real code and
that it does find bugs. I think that it would be rash to extrapolate from the
first round of experiments that Aspect could detect half the bugs missed by a
type checker. But on the other hand, I would expect there to be more Aspect
bugs in a larger system developed by a team where interface problems are
more common. | suspect also that the writing of Aspect specifications—like
type declarations—itself reduces the incidence of bugs, although this theory
is hard to test.

9.2 Comparison to Other Schemes

The introduction compared Aspect to its distant cousins such as program
verification and run-time assertions. Here we shall look at some closer rela-
tives: techniques using partial specifications that can be analyzed tractably
to detect bugs in code.

9.2.1 Inscape

Perry’s Inscape system [Per89] is the closest to Aspect in motivation. Its
central idea is “constructive specification”. Rather than viewing specifica-
tions as distinct documents that are justified in their own right, or are used
exclusively for program verification, Perry suggests that they be regarded as
part of the program structure. This means that they can be exploited by a

1Excluding some parsing code that was not specified.

140 CHAPTER 9. CONCLUSION

development environment for a variety of purposes (such as change manage-
ment and version control) that previously relied on information gleaned from
the syntactic structure of the program alone.

Inscape’s specification language, Instress, is based on Hoare triples. A
procedure has a pre-condition that is required to hold on entry and a post-
condition that is guaranteed to hold on exit. The termination states can be
partitioned into normal and exceptional conditions, with their own pre- and
post-states. Instress also provides “post-obligations”, which are the post-
state analogy to pre-conditions: they specify that some predicate is required
to hold later in the execution (for example, that a file eventually be closed).

The pre- and post-conditions and post-obligations are given as formulae
in terms of predicates that, like aspects, have no given interpretation and are
matched syntactically. For example, a procedure readFile might have a pre-
condition FileIsOpen(f); this would be discharged if it is preceded in the code
by a call to openFile, whose post-condition would contain the same predicate.
Abstract predicates can be defined in terms of these basic predicates, in a
manner akin to Aspect’s abstraction function.

The specification of a module can be synthesized from the specifications
of its components, by propagating the conditions and obligations. For ex-
ample, if readFile appears in a procedure p and is not preceded by another
procedure whose post-condition establishes its pre-condition, the predicate
FileIsOpen(f) will be added to p’s pre-conditions. This propagation is per-
formed according to a special logic in which predicates may be known, un-
known or possible.

Bug detection is a byproduct of this process. In some cases, propagation
fails because a predicate hits a logical barrier, when the predicate of a pre-
condition or obligation is contradicted. For example, if readFile is preceded
by closeF'ile, whose post-condition is = FileIsOpen(f), then the pre-condition
FileIsOpen(f) hits a “ceiling” and can be moved back no further. This sug-
gests a bug in the code. Perry did a study of reported bugs in the develop-
ment of a large telephone switch and found that a high proportion could be
attributed to interface faults of this nature [Per87).

9.2.2 Type Systems

Type systems are a popular research area. Since Algol-60 (the first widely
known language to be statically typed), there has been a trend towards type

9.2. COMPARISON TO OTHER SCHEMES 141

systems that allow more bugs to be detected at compile-time. Abstract
typing is move in this direction too. In Algol or Pascal, the type checker will
prevent the addition of a character to an integer, but given the declarations

temperature = int
weight = int

will not prevent the addition of a temperature and a weight. Type equality
is determined by structure in these languages, and since temperatures and
weights are structurally equivalent, they are not distinguished. In cLU, on
the other hand, the two types could be made abstract (by implementing them
as clusters). CLU matches abstract types by their names, so even if they had
the same representation, they would be deemed different.

LISP and its successors (e.g., Scheme) exemplify a different trend. These
languages require no type declarations and perform no static type checking
(although, unlike C, primitive types are checked at run-time). They allow
programs to be written that are not expressible in CLU or Pascal, such as a
function that reverses a list of objects of diverse types.

Type Inference

Recent research attempts to get the best of both worlds: the freedom of
LISP and the static checking of cLU. In ML, for example, there are no
type declarations, but, by a process known as type inference, the compiler
constructs the types of larger expressions from smaller expressions. This is
not an endless recursion: primitive functions like + have pre-defined types.
In general, an expression may have many types. Consider a function that
takes another function as its first argument and applies it twice to its second
argument:

twice (f,) = f(f (z))
This function can be applied to argument of different types, for example

twice (square, 2) = 4
twice (not, true) = true.

ML'’s type inference would assign this function the polymorphic type scheme

((t—1),t) — ¢

142 CHAPTER 9. CONCLUSION

that denotes a set of types in which the type variable ¢ is bound according to
the context: int in the first example and bool in the second. This type sys-
tem is less restrictive than CLU’s; twice can be coded in CLU but it cannot be
passed as an argument to another procedure before it has been instantiated.
But it is also more restrictive than the run-time typing of LISP. A hetero-
geneous list has no type in ML, for example, and a polymorphic function
passed as an argument cannot be instantiated in two ways.

Type inference relieves the programmer of writing declarations, but is a
retrograde step for bug-detection. The lack of explicit declarations makes
it harder to locate a bug, since the point at which type inference fails may
be nowhere near the source of the problem. It also undermines modularity.
The inferred type of a function may be consistent but wrong; only when the
function is used will the bug be found?.

Refinement Types

Research in polymorphic types may be seen as an attempt to make the type
system less restrictive, accepting more programs as well-typed. In this sense
it is antithetical to bug detection, where the value of type checking is in
accepting fewer programs. Refinement types [FP92| are a move in the other
direction. By elaborating the ML type system with subtypes, more errors can
be caught and certain complier optimizations become possible. For example,
a list type could be refined into two subtypes empty and non-empty. The
functions first, which returns the first element of the list, and new, which
creates a new list, can then be typed as:

first: non-empty — t
new: — emply

The expression first (new ()) now has no type, because one cannot take the
first element of an empty list. In general, a function has several types:

append: (empty, t — non-empty)
V (non-empty, t — non-empty)

Refinement types (like regular types in ML) are inferred automatically. Be-
cause of higher-order functions, the cost may vary exponentially with the

2To alleviate the problems this would cause for team projects, ML does provide a
module mechanism that enforces declaration of types.

9.2. COMPARISON TO OTHER SCHEMES 143

number of refinements, so a small set must be selected. The refinements are
defined by the programmer for the basic constructors of the type and inferred
elsewhere. Some types (such as integers) do not have basic constructors, so
they cannot be refined.

The programmer may write a refinement type declaration, but if it cannot
be inferred it will be rejected. Suppose we have a function that removes all
the elements of a list but one. The type inferencer could not prove such a
property and so it would not pass a declaration saying that a non-empty list
is returned.

Type systems are better thought of as partial verifiers than bug detectors.
They cannot admit hints from the user that might undermine their guarantee
of no run-time type errors. Bug detectors, on the other hand, can extend
their power by accepting, with a leap of faith, assertions made by the user.
The Aspect checker infers from a procedure specification that dependencies
that are not listed can be assumed to be missing, even if they appear to be
present in the code. It can thus incorporate facts that are true but could not
have been inferred tractably.

The need to prove all type assertions leads to a more significant prob-
lem: an-abstract type cannot have refinements that are independent of its
representation. One could not define a set type with refinements empty and
non-empty and then implement the set as a hash-table, for example. Re-
finement types have also only been applied so far to functional programs,
although work on imperative extensions is underway.

Typestate

A similar use of typing [Str83] was invented for the NIL programming lan-
guage. Its purpose was to enforce at compile-time the safety of some low-level
language constructs that were notorious causes of bugs. The subtypes in this
case were called typestates. A variable’s typestate may change when acted
upon by an operation. The change is determined by the typestate declaration
of the operation, which is like a pre- and post-condition giving the typestate
the variable should be in when the operation is called and the typestate it
will be in when the operation returns. A message type, for example, might
have typestates uninitialized, empty and full; the allocate operation would
require a message variable to be uninitialized and change it to empty. Each
type of the language has a regular grammar that ‘defines the legal typestate

144 CHAPTER 9. CONCLUSION

transitions. If a procedure has forbidden transitions, it is rejected by the
compiler.

By providing a set of abstract types (such as messages), the designers of
NIL hid primitive pointer operations from the programmer and could prevent
errors like dereferencing an uninitialized pointer by typestate checking. The
typestate system did not allow a variable to have several possible typestates
at some point in the program (unlike refinement types discussed above) and
when branching in a program led to this, the checker simply deemed it illegal.
So one could not write a NIL program in which one branch of an if-statement
initialized a message and the other branch did not. This discipline makes
sense for low-level types, but for user-defined types—which cannot be given
typestates anyway—it would be too constraining.

FX: Side-Effects as Types

The final type system we shall look at is FX [GJS092]. Like refinement
types, its purpose is to make finer distinctions in highly polymorphic code.
Its motivation, though, is not bug-detection but exposing parallelism. By
regarding the presence or absence of side-effects as part of the type system,
FX can determine whether two expressions can be evaluated at the same
time. There are three classes of side-effects: read, write and allocate [GL86].
In the same way that compound types can be built out of primitive types,
compound effects are built of these and a function constructor. The effects
of expressions are given first-class status, and effects, like types, may be
polymorphic. Effects can be parameterized by “regions”, partitions of the
heap [GL88]. Expressions that have side-effects on disjoint objects can then
be distinguished (and executed in parallel). Recent work has concentrated
on “effect reconstruction”: inferring effects without declarations [JG91].
Effect reconstruction can never fail, since every expression has some effect.
Effect systems do not immediately help detect bugs, but they may be useful as
part of another static analysis. The alias analysis that FX performs implicitly
is quite similar to Aspect’s. It is less accurate, because regions are essentially
sets of objects and thus imply a transitive aliasing relation. If z and y may
be aliased, and z and z may be aliased, they will all be placed in the same
region, even though y and z may never be aliased. Also, the sequencing of
operations can only accumulate effects, so an alias cannot be undone as in
Aspect. But effect analysis is simpler and more efficient than the Aspect

9.2. COMPARISON TO OTHER SCHEMES 145

analysis and extends elegantly to higher-order functions. Perhaps a version
of Aspect could be designed that relied on the pre-calculation of effects in
the same way that it relies on pre-calculation of types.

9.2.3 Event Sequence Analyzers

Many compilers perform certain “sanity” checks: that a variable is defined
before it is read, or that a pointer is initialized before it is dereferenced. One
of the earliest and most comprehensive systems to do this kind of analysis
was DAVE [FO76]. Three kinds of event are identified: read, define and
undefine. Suspicious sequences of events are defined with path expressions;
if the events of a variable match one, a message is displayed. For example,
the code fragment

matches the path expression dd representing two definitions without an in-
tervening read and is probably an error since the first has no effect. Because
the analysis is performed statically, a match may occur for an “infeasible
path”—one that cannot occur in practice—and give a spurious message. It
also crosses procedure boundaries, so clever algorithms are needed to make
it practical.

It is not clear whether sequencing anomalies arise with any frequency in
programs written in modern languages. In CLU, for example, there are no
dangling references because the garbage collector deallocates storage auto-
matically; no array initialization errors because the design of the array op-
erations prevents the creation of an array with holes in it; and few variable
reference anomalies because of strict scoping rules that encourage declara-
tion of variables at the point of use. The undefine event is a peculiarity of
Fortran that cannot arise in CLU: a loop variable may still be in scope after
the termination of the loop, but has no defined value. For programs written
in low-level languages, these bugs still occur and a tool based on DAVE has
been built for C programs[WO85].

Cesar

DAVE detects anomalies rather than bugs: the path expressions are predefined
criteria. The idea of catching errors in event sequences can be extend beyond

146 CHAPTER 9. CONCLUSION

anomalies, by allowing the programmer to define the path expressions. The
Cesar system [O089] lets the user define sequencing constraints, so one can
specify, for example, that a file is opened, read and written, and then closed.

Unlike Typestate and Inscape, there are no procedure-level assertions
and so the constraints are checked globally across the whole program. This
lack of modularity has many unpleasant consequences. Procedures cannot
be checked independently without reference to the code of other modules, so
none can be checked until all have been coded. A bug in one may mask a
bug in another, and bugs cannot be localized within procedure boundaries.
Global analysis is also expensive. Apparently, it takes about 3 minutes to
check a 20-line program. This would not be a problem in itself, but it appears
that the cost varies with the square of the program size, so checking a 1000-
line program would take several days. The latest paper [0092] reports that
the implemention is still not fast enough to be applied to real code.

Even if Cesar were to work efliciently, it is not clear that sequencing errors
of this nature are very common. Abstract types are usually designed so that
their operations can be called in any context without misbehaving.

Comments Analysis and Flavor Assertions

Howden’s “comments analysis” {How90] was inspired by the work on Cesar.
The programmer writes assertions about the states of objects as formal com-
ments in the code; these are believed by the checker. Assumptions, written at
other points in the code, are then matched against assertions for consistency.
Flavor analysis [How89] is an instance of comments analysis. A flavor is like
a typestate and the assertions take the form “object O has flavor F”. An
integer used in the summing of an array, for example, might have the flavors
zero, partial-sum and total. One could then assert that during the summing
the integer is a partial-sum and at the end it is a total. A point later in the
code that relies on the total having been computed could assume that it is
a total. More elaborate forms of comments analysis allow assertions to make
statements about the sequences of operations that have been called up until
that point.

Howden’s comments are a bit like Inscape assertions, but since they are
not associated with procedure boundaries, they call for global analysis. The
names of the objects are purely syntactic and the semantics of the program-
ming language plays no role in the comments analysis. Howden sees this as

9.2. COMPARISON TO OTHER SCHEMES 147

an advantage, because it allows the programmer to make assertions that are
not associated with any data object. But it also means that an assertion
about an array element afi/ has no more relevance to another element afj/
than to any other variable; the user must provide all these associations, mak-
ing separate claims for different syntactic expressions that are semantically
identical.

I think it is a mistake to spurn the semantics of the programming lan-
guage. It results in a loss of compositionality. The specification of a com-
posite structure should be a simple function of the specifications of its parts.
Type systems exemplify this quality, and Aspect’s compositionality comes by
piggy-backing its specifications on top of types. For example, if you declare a
type to be an array of records, no new specification is needed, because Aspect
puts together the array and record specifications in the right way. Without
any semantic common ground, the constructors of the programming language
will have no counterparts in the specification domain.

9.2.4 Program Slicing

Program slicing [Wei84] is not a bug detection scheme but its use of depen-
dency analysis is closely related to Aspect’s. A program is sliced by choosing
an instance of a variable (an appearance on some line of the program) and
then deleting some statements that do not affect its value. The resulting
skeleton, called a slice, is itself a program: an abstraction of the original
program whose behaviour is identical on the value of that variable instance.
For a programmer wanting to understand why a variable has the wrong value
at some point in the program, a slice provides as much information as the
whole program but is usually much smaller.

Program slices can be calculated by tracing the dependencies of the vari-
able instance back through the code, marking the lines that might contribute
to its value. For the same reason that the Aspect dependency calculation is
only approximate, finding the smallest slice is in genera' not possible.

The Aspect calculation could easily be adapted to calculating program
slices. The tags of an aspect would become pairs consisting of a source (an
aspect of the pre-state upon which that aspect depends) and a line number
(the line at which the dependency was established). Using Aspect would
give smaller slices than a conventional calculation. For example, in the code
fragment

148 CHAP =R 9. CONCLUSION

e:=f
array(t/8addh (a, €)
afi] :=j

s := arrayft|$size (a)

a slice on s in the last line would eliminate all other lines except the second,
while a conventional slicing could eliminate none. Programs could also be
sliced on aspects rather than variables. A slice on low(a) in the last line,
for example, would eliminate the first three; a slice on el(a) would eliminate
none.

9.3 Aspect’s Design Principles

Aspect’s design was guided from the start by a number of design principles.
Here are some of the qualities that I thought were important for the checker
and the notation:

e Soundness. Aspect never reports a bug when the code could meet its
specification. None of the other systems discussed above have this
property: they all give spurious messages. The flip side of this coin is
that Aspect, in contrast to the tools based on type checking, does not
certify any properties of the program.

e Generality. Aspect was designed to be applicable to a broad class of
programming languages. This meant handling all the typical features of
imperative programming that complicate static analysis but are widely
used, such as pointers, aliasing, exceptions and dynamic allocation.
Aliasing is the most troublesome of these, and is ignored by most other
schemes. It is a cruel irony of bug detection that complications in the
programming language are especially important, because they are often
the cause of bugs.

e Declarativeness & Referential Transparency. The order of assertions in
a specification should not matter, and the meaning of an expression
should be the same wherever it appears. This is true of all the schemes
discussed above but was almost not true of Aspect. Prenaming saved
the day, by preventing binding assertions from changing the meaning
of object names.

9.4. CONTRIBUTIONS 149

o Predictable Efficiency. Aspect is roughly linear in the length of the
program and in the worst case (nested loops) the time varies with the
square of the number of aspects. Its performance does not seem to vary
much over the range of programs I have tried it on.

9.4 Contributions

Aspect is a simple scheme: its notation is spare and its mechanism is a simple
adaptation of dependency analysis. Yet it achieves some power by bringing
together four novel ideas:

1. Missing Dependencies. The bugs that result in missing dependencies are
mostly not detectable by other static means. Errors of omission, which
have not been easy to detect up until now, are particularly amenable
to Aspect’s analysis, and complement the class of bugs that are readily
detectable by type checking. Specifying minimal rather than maximal
dependencies has the great advantage of soundness: no spurious bugs

_ are reported.

Dependency specifications take tractable analysis a step towards con-
ventional specifications. The close relationship between saying “z is
determined by y” and “z is a function f of y” makes them fairly natu-
ral and easy to write. Because dependency specifications relate different
objects, Aspect can check not only what happened to a single object,
but how it was put together from other objects. This idea is not new in
formal specifications, but it appears to be novel for a tractable scheme.

2. Aspects. Dividing objects into aspects brings the dependency calcu-
lation to life. Programs built from abstract types tend to have few
variables or complex structures in a given scope; most of the interest-
ing structure is hidden, and thus escapes a simple dependency analy-
sis. Aspects introduce structure without exposing the representations
of types, leading the simple dependency calculation into performing an
abstract analysis about the properties of interest.

3. Reference Aspects. Interpreting some aspects as references allows the
obje~t structure of the program state (and thus aliasing) to be described

150

CHAPTER 9. CONCLUSION

in the same framework. An aspect’s possible values and its dependen-
cies fit smoothly together and their calculations are approximated in
the same way. The framework subsumes unbounded collection objects
too, by viewing their contents in terms of an archetypal element.

. Abstraction Functions. The user’s freedom to invent the aspects of a type

is the key to the abstract analysis. At the same time, however, freeing
the user from the details of the representation is potentially dangerous,
since the abstract assertions might not tally with the details they claim
to hide. Abstraction functions bridge this gap. Aspect seems to be
unique among static analyses in supporting consistency checks across
levels of abstraction.

I started this work hoping to substantiate three theses:

My experience with Aspect suggests that together these form a promising

e partial specification—that a formal specification may be more effective

if its scope is limited;

e abstraction—that a tractable analysis need not be low-level, and that

abstract claims can be checked against concrete details; and

o credulous checking—that a checker’s power is amplified if it can incor-
g9— p

porate information that could not be derived automatically.

=

approach. The world of routine static analysis performed by compilers and
the world of formal specification have existed mostly in isolation from one
another. I believe that their fusion holds great opportunities and that this
approach is a start in that direction.

Glossary

abstract type The type of a data object is said to be abstract if there is
only a fixed set of procedures that have access to its representation.
These procedures are usually encapsulated within a module, so that
any change to the representation of the type that nevertheless preserves
the behaviour of the access operations affects only the code within the
module. The CLU module for abstract types is called the cluster, and
the type checker can (most of the time) prevent outside access to the
representation.

abstraction A process of removing accidental information and leaving the
essence. The term also sometimes describes the result of the process. A
local MIT dialect (but not this thesis) treats the word as a synonym for
program module (e.g., procedural abstraction, type abstraction). The
keyword ‘abstraction’ in an Aspect specification marks the abstraction
function, which relates the concrete and abstract aspects of a type.

affected by The dependency assertion a « 3 is read ‘a is affected by 3’, and
means that, in addition to « depending on f, a is read and § is written.

aliasing Two variables are aliased when they are bound to the same location,
so that a change to one appears also to be a change to the other. This
happens in Pascal, for example, when two call-by-reference actuals are
the same variable. It also arises because of pointers, and in CLU, since a
variable is a pointer to an object, even plain assignment causes aliasing.
I use the term more generally too, whenever a single object or location
may be accessed under different names.

allocation Placing a newly created object in an unused area of the program
heap. Aspect provides allocation assertions to describe how procedures

151

allocate new objects. The assertion a : ¢ means that a fresh object
of type t is allocated and given the name a, local to the procedure
specification.

anomaly A flaw in a program that is evident without any idea of what the
program is supposed to do, such as reading an uninitialized variable
or looping forever. Anomalies are not necessarily bugs (as Lint users
know to their cost). Dead code, for example, may do no damage.

argument A variable that names an object on which a procedure acts; distinct
from a parameter, which is bound statically in CLU.

array CLU arrays are dynamic and can grow and shrink at either end. The
array operations are designed so that an array cannot be created unless
all its elements are well-defined. An array is not an indexed set of
variables but an object in its own right. The statement afi] := jis a
shorthand for the procedure call arrayft/$store (a, ¢, j), and i := afj]
likewise is short for i := arrayft/$fetch (a, j).

Aspect The position of planets and stars with respect to one another, held by
astrologers to influence human affairs. Also, a notation and a technique
for detecting bugs in programs.

aspect A name for an abstract component of an object. A window object,
for example, might have the aspects colour, dimensions, position and
contents. There are two kinds: plain and reference aspects. Reference
aspects are further divided into pointer and collection aspects.

aspect expression An aspect of a particular object; colour(w), for example, to
denote the colour of a window object called w. An aspect expression
may be formed from any kind of aspect. If p is a pointer aspect, p(z)
denotes the identity of location of the object pointed to by the p aspect
of z. If c is a collection aspect, ¢(z) denotes the set of identities or
locations of the objects referred to by the ¢ aspect of z.

aspect state Aspect specifications are defined over abstract states called ‘as-
pect states’; the checker performs an abstract interpretation over a col-
lecting state corresponding to a set of aspect states. Not to be confused
with the state of Aspect, which has been dismal at times.

152

assertion A clause in an Aspect specification of a procedure. There are three
kinds: allocations, bindings and dependencies.

assignment The CLU assignment z := y makes the variable z a name for the
object called y. As a result, z and y become aliased: they name the
same object, and a mutation of that object under one name will be
visible under the other too.

binding A kind of Aspect assertion; a(p):— b(q) says that the a aspect of the
object called p (in the pre-state) has the value in the post-state that the
b aspect of ¢ has in the pre-state, in some invocation of the procedure.

bug An inadvertent flaw in a program that causes it to misbehave under
certain conditions. Most programs contain bugs; they may be hard to
identify because they only manifest themselves in rare circumstances, or
more commonly, because nobody knows what the program is supposed
to do anyway.

checker The Aspect checker is a tool that reads in a CLU program annotated
with Aspect specifications and generates a report listing bugs that have
been detected.

client A client of a program module is another module that uses it and relies
on its correctness. If a procedure p calls a procedure ¢, for example,
then p is a client of q.

clipboard Part of an editor buffer that holds text that has been cut and can
be reinserted later. '

CLU A programming language invented by Liskov at MIT in the late 1970’s.
It looks like Algol, but its semantic model is closest to LISP or Scheme.
CLU does not stand for ‘clumsy’ or ‘clutter’.

cluster The CLU model for abstract data types. A polymorphic type is built
by parameterizing a cluster with a type variable.

collection aspect Represents a set of references. For example, an object a of
type arrayft] has a collection aspect el; a.el is a name for an element
object and elfa) is an aspect expression denoting the set of identities
of the element objects.

153

control dependency A standard term from compiler analysis. In the state-
ment if b then ¢ := y, has a dataflow dependence on y and a control
dependence on b.

cursor The current position in an editor buffer at which a character typed at
the keyboard will be inserted. Called the point in emacs.

cvt A CLU keyword short for ‘convert’ used as the name of a type in the
header of an abstract operation. From outside the operation, it denotes
the abstract type; from inside, the representation type.

dependence, dependency An aspect a depends on an aspect 3 over some pro-
gram text if the initial value of 3 affects the final value of a. Then «
has a dependence on 3 and there is a dependency between a and 5.

dereference In programming language jargon, dereferencing or following a
pointer means obtaining the object it refers to.

environment Part of the program state; maps variables to the locations of
the objects they denote. In CLU, the environment is a stack, but since
the effect of a procedure call can always be determined from its speci-
fication, Aspect has no need of a stack and a simple mapping suffices.

handler A handler is a synactic construct in CLU associated with one or more
exceptions. It is attached to a simple or compound statement. When
a procedure raises an exception, control passes to the handler with the
smallest scope that inciudes the procedure call. The statements of the
handler are then executed, and control returns to the point immediately
following the statement to which the handler is attached.

immutable An object is immutable if its value can never change over its life-
time. In CLU, a type is either mutable or immutable, and the objects
of an immutable type are immutable. Integers, for example, are im-
mutable. The increment z := z + I causes z to refer to a fresh integer
obje~t that is one greater than the object it referred to previously: the
integer object itself is not mutated. In a program constructed only from
immutable types, aliasing is invisible and assignment may be thought
of as copying.

implementation The code of a procedure is one of its implementations.

154

mark A kind of secondary cursor, used in some editors to dcuneate a portion
of text called the ‘region’.

mutable An object is mutable if its value can change; otherwise it is im-
mutable. Arrays are mutable, but integers are immutable.

operation An operation of a datatype is one of its procedures.

ordering The aspect ordering of a type defines, for its set of aspects, which
may be derived from which. It is given as an annotation following the
aspect declaration.

parameter In CLU, procedures and types may have parameters that are in-
stantiated at compile-time. For example, a sort procedure may have
a type parameter ¢t denoting the type of the elements of the array to
be sorted; a stack type may have a type parameter for the type of the
objects it contains.

plain aspect An aspect that is not a reference aspect.

pointer aspect Represents a reference to a single object. For example, if r is
an object of type record [f:t, g:t], then r has pointer aspects f and g.
The aspect expression f(r) denotes the identity of the object pointed
to by the f field of r; r.f is a name for that object.

polymorphism A procedure is polymorphic if the same code can be applied to
arguments of different types: a sorting routine, for example, may work
for integers or strings. An abstract type is polymorphic if its objects
contain objects of some unspecified type, and of its operations can be
applied irrespective of that type. For example, you can implement a
type set[t] in CLU and instantiate the type variable ¢ to be an integer
giving setfint] or a string giving set[string]. CLU’s polymorphism is
‘parametric’; there is no subtype polymorphism.

pre, post The pre-state of a procedure is the initial state in which it is in-

voked; the post-state is the final state immediately following its execu-
tion. .

155

prenaming Since the naming of objects may change when a procedure is ex-
ecuted, some convention is needed for the naming of objects in asser-
tions. Objects are ‘preramed’ in Aspect, which means that any object
name appearing in an aspect expression refers to an object named in
the pre-state of any procedure call.

procedure May return an object in CLU and need not cause side-effects on its
arguments.

record An object that contains a fixed set of named references to other ob-
jects. A CLU record is like a struct in C in which the fields are pointers.

reference aspect Represents one or more references to other objects. There
are two kinds of reference aspects: pointers (for single references) and
collections (for multiple references).

region The portion of text in an editor buffer between the mark and the
cursor.

rep A CLU keyword for the representation type of a cluster. A cluster always
implements exactly one abstract type, so rep is unambiguous.

representation The type in which an abstract data type is implemented. A
set abstract type, for example, may be implemented as a binary tree, a
hash table or an array: these are all possible representations of a set. A
CLU abstract type may only have one representation, which is defined
in the cluster of the type.

rep exposure The representation of an abstract type is exposed if one of its
operations is coded in such a way that part of the representation be-
comes accessible outside the cluster. This is bad news, because the
operations can no longer be reasoned about in isolation.

signature The header of a procedure gives the names and types of its argu-
ments and results. In type checking calls to the procedure, only the
signature is needed: the header without the argument names.

sound A sound bug detection scheme is one never reports a bug unless a bug
is present, that is, the code does not meet its specification. We use the

156

term in its logical sense, where the inference is considered to be the
reporting of a bug.

zapping Deleting from the text of a buffer all the characters between the
buffer and the next occurrence of some character. The deleted text is
placed in the clipboard.

157

158

Bibliography

[Acr79)

[BCS5]

[CHTT79]

[CWZ90]

[Dij76]

[Fer87]

[FOT6]

[FP92]

A.T. Acree, T.A. Budd, R.A. DeMillo, R.J. Lipton and F.G. Say-
ward, Mutation Analysis, Tech. Rep. GIT-ICS-79/08, School of
Information and Computer Science, Georgia Inst. of Technology,
Atlanta, GA, Sept. 1979. '

Jean-Francois Bergeretti and Bernard A. Carre, ‘Information-
Flow and Data-Flow Analysis of while-Programs’, ACM Trans.
Programming Languages and Systems, 7/1, Jan. 1985.

Thomas E. Cheatham Jr, Glenn H. Holloway and Judy A. Town-
ley, ‘Symbolic Evaluation and the Analysis of Programs’, IEEE
Trans. on Software Eng., SE-5/4, July 1979.

David R. Chase, Mark Wegman and F. Kenneth Zadeck, ‘Anal-
ysis of Pointers and Structures’, Proc. ACM Conf. on Principles
of Programming Language Design and Implementation, 1990.

E.W. Dijkstra, A Discipline of Programming, Prentice Hall, En-
glewood Cliffs, 1976.

J. Ferrante, ‘The Program Dependence Graph and Its Use in Op-
timization’, ACM Trans. Programming Languages and Systems,
July 1987.

L.D. Fosdick and L.J. Osterweil, ‘Data Flow Analysis In Software
Reliability’, ACM Computing Surveys, 8/3, Sept. 1976.

Tim Freeman and Frank Pfenning, ‘Refinement Types for ML’,
Proc. ACM Conf. on Principles of Programming Language De-
sign and Implementation, 1991.

159

[GG89)]

[GJS092]

[GLS6]

[GL8S]

[Gut77]

[GYT6]

[HoaT2]

[How76]

[How77]

[How89]

Stephen J. Garland and John V. Guttag, ‘An Overview of LP,
the Larch Prover’, Proc. 3rd Int. Conf. on Rewriting Techniques
and Applications, Chapel Hill, N.C., Lecture Notes in Computer
Science 355, Springer-Verlag, 1989.

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon and
James O’Toole, Report on the FX-91 Programming Language,
MIT/LCS/TR-531, Feb. 1992, MIT Lab For Computer Science,
Cambridge, MA 02139.

David K. Gifford and John M. Lucassen, ‘Integrating Functional
and Imperative Programming’, ACM Conf. on LISP and Func-
tional Programming, Aug. 1986.

David K. Gifford and John M. Lucassen, ‘Polymorphic Effect
Systems’, Proc. ACM Conf. on Principles of Programming Lan-
guages, 1988.

John V. Guttag, ‘Abstract Data Types and The Development of
Data Structures’, Comm. ACM, 20/6, June 1977.

Susan L. Gerhart and Lawrence Yelowitz, ‘Observations of Fal-
libility in Applications of Modern Programming Methodologies’,
IEEE Trans. on Software Eng., SE-21/3, Sept. 1976.

C.A.R. Hoare, ‘Proof of Correctness of Data Representations’,
Acta Informatica, 2, 1973.

William E. Howden, ‘Reliability of the Path Analysis Testing
Strategy’, IEEE Trans. on Software Eng., SE-2, Sept. 1976.

William E. Howden, ‘Symbolic Testing and the DISSECT Sym-
bolic Evaluation System’, IEEE Trans. on Software Eng., SE-
3/4, July 1977.

William E. Howden, ‘Validating Programs Without Specifica-

tions’, Proc. 3rd ACM Symp. on Software Testing, Analysis and
Verification (TAV3), Key West, Florida, Dec. 1989.

160

[How90]

[HPRSY]

[Jac91]

[JG91]

[Lam81]

(LG86]

[LHSS]

[Lis79)

[Lis92]

[LvHS5)

[Mey88]

[Off92]

William E. Howden, ‘Comments Analysis and Programming Er-

rors’, IEEE Trans. on Software Eng., SE-16/1, Jan. 1990.

Susan Horwitz, Phil Pfeiffer and Thomas Reps, ‘Dependency
Analysis for Pointer Variables’, Proc. ACM Conf. on Principles
of Programming Language Design and Implementation, 1989.

Daniel Jackson, ‘Aspect: An Economical Bug-Detector’, Proc.
13th Int. Conf. on Software Eng., Austin, Texas, May 1991.

Pierre Jouvelot and David K. Gifford, ‘Algebraic Reconstruc-
tion of Types and Effects’, Proc. ACM Conf. on Principles of
Programming Languages, 1991.

B. W. Lampson et al., Report on the Programming Language
FEuclid, Report CSL-81-12, Xerox PARC, CA, October 1981.

Barbara Liskov and John Guttag, Abstraction and Speczﬁcatwn
in Program Development, McGraw Hill, 1986.

James R. Larus and Paul N. Hilfinger, ‘Detecting Conflicts Be-
tween Structure Accesses’ Proc. ACM Conf. on Principles of
Programming Language Design and Implementation, June 1988.

Barbara Liskov et al., CLU Reference Manual, Oct. 1979,
MIT/LCS/TR-225, MIT Laboratory For Computer Science,
Cambridge, MA 02139.

Barbara Liskov, ‘A History of CLU’, to appear in ACM Symp.
on the History of Programming Languages, 1992.

D.C. Luckham and Friedrich W. von Henke, ‘An Overview of
Anna, A Specification Language for Ada’, IEEE Software, 2/2.
March 1985.

B. Meyer, Object-oriented Software Construction, Prentice-Hall,
1988.

A. J. Offutt, ‘Investigations of the Software Coupling Effect’,
ACM Trans. on Software Engineering and Methodology, 1/1,
Jan. 1992.

161

[0089]

[0092]

[ParT2]

[Per87]

[Per89]

[Per89]

[Str83]

[Suf82]

[Wei84]

[WO8S5]

Kurt M. Olender and Leon J. Osterweil, ‘Cesar: A Static Se-
quencing Constraint Analyzer’, Proc. 3rd ACM Symp. on Soft-
ware Testing, Analysis and Verification (TAV3), Key West,
Florida, Dec. 1989.

Kurt M. Olender and Leon J. Osterweil, Interprocedural Static
Analysis of Sequencing Constraints’, ACM Trans. on Software
Engineering and Methodology, 1/1, Jan. 1992.

David L. Parnas, ‘On the Criteria to be Used in Decomposing
Systems into Modules’, Comm. ACM, Dec, 1972.

D.E. Perry and W.M. Evangelist, ‘An Empirical Study of Soft-
ware Interface Faults—An Update’, Proc. of 20th Annual Hawaii
Conf. on System Sciences, Jan. 1987.

Dewayne E. Perry, ‘The Inscape Environment’, Proc. 11th Int.
Conf. on Software Eng., May 1989.

Dewayne E. Perry, ‘The Logic of Propagation in The Inscape En-
vironment’, Proc. 3rd ACM Symp. on Software Testing, Analysis
and Verification (TAV3), Key West, Florida, Dec. 1989.

Robert E. Strom, ‘Mechanisms for Compile-time Enforcement
of Security’, Proc. ACM Conf. on Principles of Programming
Languages, 1983.

Bernard Sufrin, ‘Formal specification of a Display-Oriented Text
Editor’, Science of Computer Programming, 1982, Vol. 1, pp.
157-202.

Mark Weiser, ‘Program Slicing’, IEEE Trans. on Software Eng.,
SE-10/4, July 1984.

Cindy Wilson and Leon J. Osterweil, ‘Omega—A Data Flow
Analysis Tool for the C Programming Language’, IEEFE Trans.
on Software Eng., SE-11/9, Sept. 1985.

162

DARPA OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office

Defense Advanced Research Projects Agency (DARPA)

1400 Wilson Boulevard

Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street

Arlington, VA 22217

Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 2 copies
Cameron Station ’
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities

1800 G. Street, N.W.

Washington, DC 20550

Attn: Program Director

HEAD, CODE 38 1 copy
Research Department
Naval Weapons Center
China Lake, CA 93555

